Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA space scientists find way to monitor elusive collisions in space

24.04.2013
Many collisions occur between asteroids and other objects in our solar system, but scientists are not always able to detect or track these impacts from Earth. The "rogue debris" created by such collisions can sometimes catch us by surprise.

UCLA space scientists have now devised a way to monitor these types of collisions in interplanetary space by using a new method to determine the mass of magnetic clouds that result from the impacts.

Their findings, published online this month in the journal Meteoritics and Planetary Science, are the result of nearly 30 years of observations of collisions and could help scientists better understand where to look first to find new meteroid debris that could become dangerous.

"The passage by the Earth earlier this year of the small asteroid 2012 DA14 and the explosion the same week of an even smaller asteroid in the atmosphere above central Russia remind us that while space is mostly empty, the objects that are orbiting the sun do occasionally collide with other orbiting bodies, and the energy released in such collisions can be catastrophic to the bodies involved," said Christopher T. Russell, a professor in UCLA's Department of Earth and Space Sciences and a co-author of the research.

"We have found a way by which we can monitor such collisions in space by identifying the magnetic signature produced in these collisions," he said. "While the colliding objects may be only tens to hundreds of feet across, the resulting magnetic signature can be hundreds of thousands of miles in width and be carried outward from the sun by the solar wind for millions of miles."

Hairong Lai, a graduate student in Russell's laboratory, devised the method for finding the mass of collision-produced magnetic clouds, which contain fine, electrically charged dust.

"We have used multiple spacecraft encounters with these magnetized clouds to determine their dimensions," said Lai, the lead author of the research. "Then we calculate the magnetic force applied to the dust, which balances the sun's gravitational force, allowing us to weigh the fine component of the debris created by the collision. These dust clouds weigh from about 10,000 to 1 million tons — very similar in mass to the asteroids the Earth recently encountered over Russia and over Australia."

The technique of monitoring the debris cloud of collisions magnetically was applied to material that co-orbits with the asteroid known as 2201 Oljato. This asteroid was first associated with collisions near Venus in the early 1980s; Oljato made successive passes by Venus in 1980, 1983 and 1986, when NASA's Pioneer Venus spacecraft was in orbit around the planet.

In 2006, the European Space Agency's Venus Express mission entered orbit and resumed monitoring the collisions. Now, some 30 years later, the collision rates have dropped dramatically in the sector in which impacts with material in Oljato's orbit could be detected, but the rates are unchanged elsewhere.

"The collisions have destroyed both the impactors and their targets in this longitude sector, demonstrating that meteor streams can be quite dynamic," said Hairong, who presented research last week at the third Planetary Defense Conference of the International Academy of Astronautics, in Flagstaff, Ariz. "They can be created by collisions and also destroyed by collisions."

Asteroids whose positions are known by scientists are all potential producers of smaller meteroids that can change orbits more rapidly, making it difficult to keep track of them, Russell said. This new method, he said, makes such tracking much easier.

The research was made possible by the acquisition of data by Pioneer Venus and by Venus Express missions, and received support from both NASA and the Los Alamos National Laboratory's Institute of Geophysics and Planetary Physics.

UCLA is California's largest university, with an enrollment of more than 40,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and six faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>