Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UChicago Launches Search for Distant Worlds

17.10.2011
Since 1995, scientists have discovered approximately 600 planets around other stars, including 50 planets last month alone, and one that orbits two stars, like Tatooine in Star Wars. Detection of the first Earthlike planet remains elusive, however, and now the University of Chicago joins the search with the addition of Jacob Bean and Daniel Fabrycky to the faculty.

“I can’t imagine a more profound impact on humanity than the discovery that there are other Earthlike worlds or that we are not alone,” said Rocky Kolb, the Arthur Holly Compton Distinguished Service Professor in Astronomy & Astrophysics and department chairman.

Bean joins the faculty as an assistant professor in astronomy & astrophysics this autumn quarter. Fabrycky, who was a member of the team that discovered the Tatooine-like planet, will join the department next fall. Bean and Fabrycky were hired following a joint search conducted by the Department of Astronomy & Astrophysics and the Department of Geophysical Sciences.

The new faculty additions come as the University as a whole is engaged in a significant expansion of its faculty. The departments of geophysical sciences and astronomy & astrophysics had identified the study of exoplanetary systems as one priority for their faculty, noting that discoveries in this arena “could have intellectual, cultural, and societal impacts comparable to those of Copernicus, Galileo and Darwin.”

A host of geophysical sciences faculty members already pursue interests related to exoplanets, said Michael Foote, professor and chairman of geophysical sciences. “What I personally find interesting is to see just what is the spectrum of variation in the kinds of planetary systems there could be out there,” said Foote, a paleontologist. “Models of solar system formation largely have been based on the details of our own system. Now that others are being discovered, many with unexpected properties, we need to revise our models.”

Exoplanets have emerged as a fairly recent interest of Dorian Abbot, assistant professor in geophysical sciences. Abbot has focused most of his work on periods deep in Earth history, when ice and snow may have covered the entire planet, and on other fundamental problems in climate dynamics and variability.

Pushing to smaller planets

But last July, he and Eric Switzer, postdoctoral fellow at the Kavli Institute for Cosmological Physics, published a paper in Astrophysical Journal Letters about conditions under which an earthlike-planet that has been ejected from its planetary system could sustain a life-nurturing liquid ocean. Switzer, a member of the South Pole Telescope team, primarily studies deep-space phenomena, including the afterglow of the big bang.

“We met at a party and were walking out together and found out we lived in the same neighborhood, then the same building, then the same floor,” Abbot said. “Then we started talking about various science questions.”

Their rogue-planet paper resulted from their discussions. But with exoplanetary research emerging as a new focus in the departments of geophysical sciences and astronomy & astrophysics, such collaborations are more likely to arise intentionally rather than from serendipitous encounters.

“The culture around here is that departmental and divisional boundaries just don’t mean anything,” Foote said. “In general, people follow their interests irrespective of what other units the folks are appointed in.”

Bean comes to UChicago from the Harvard-Smithsonian Center for Astrophysics, where he worked as a postdoctoral researcher. His interests include finding new planets to determine the census, orbits and masses of planets, and the architecture of planetary systems, as well as studying the detailed physical properties of individual planets.

Bean would especially like to detect and study ever-smaller planets. “The ultimate goal is to find and study Earth-size extrasolar planets that may be habitable,” he said.

Observing low-mass stars is a practical way to detect smaller planets because the techniques Bean uses all involve measuring a signal relative to the planet’s host star. A star of low mass and small size facilitates the detection of smaller planets for a given level of precision as compared to larger stars, which include the sun.

“In the push to smaller planets, low-mass stars offer a shortcut,” Bean said. “It also turns out that low-mass stars are the most numerous type of stars in our galaxy, so taking the census of planets around these stars is an important component of understanding the overall planet population.”

Bean noted that UChicago’s newly acquired access to the Magellan Telescopes and its founding membership in the Giant Magellan Telescope will be critical to his future success. “I look forward to making many exciting discoveries with these facilities,” he said.

Fabrycky is a Hubble Postdoctoral Fellow at the University of California, Santa Cruz, where his research has focused on the Kepler mission to find Earth-size planets around other stars. He specializes in the dynamics of exoplanets and their orbital characteristics.

For Kepler he’s been studying the architecture of planetary systems using the passage of the planets in front of their stars. “The precise timing of those mini eclipses, called transits, tells you about what other planets are acting gravitationally in the system,” he explained. “If you see one planet whose transits are not perfectly periodic, that means it’s likely being gravitationally acted on by another planet.”

Fabrycky is a relatively rare theorist in the community of exoplanetary scientists, most of whom are observers. “I am interested in observations as well,” he said, but from a more theoretical or mathematical point of view. “I can see things in the data that other people miss and I think that’s my strength.”

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>