Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAH Scientists Ship Instrument That Will Expand View of Global Lightning

12.02.2015

An expanded view of lightning around the globe is coming closer for scientists at The University of Alabama in Huntsville (UAH), thanks to a repurposed measuring instrument.

UAH researchers have passed NASA qualifying inspections and shipped out a Lightning Imaging Sensor (LIS) in preparation for its planned March 2016 flight to the International Space Station (ISS). The instrument, dubbed ISS LIS, was originally built as a flight spare for a LIS mission that launched in November 1997 aboard NASA’s Tropical Rainfall Measuring Mission (TRMM). That instrument is still in operation today.


Michael Mercier / UAH

The complete ISS LIS awaits packing for a trip to Johnson Space Center in Texas.

Like the LIS that flew before it, the current ISS LIS is a space-based instrument used to detect the distribution and variability of total cloud-to-cloud, intracloud and cloud-to-ground lightning that occurs in the tropical regions of the globe.

Funded by NASA, ISS LIS is being shipped to the Johnson Space Center (JSC) in Houston, Texas, where it will be integrated onto the Space Test Program H5 spacecraft as one of 10 instruments. The integrated H5 spacecraft will then undergo environmental testing at JSC through August of 2015.

... more about:
»ISS »NASA »Space »Space Center »TRMM »UAH »activity »lightning »spacecraft

The H5 will then be shipped to NASA Kennedy Space Center for integration onto the EXpedite the PRocessing of Experiments to Space Station (EXPRESS) Pallet Adapter (ExPA). The ExPA will in turn be attached to a SpaceX Dragon Capsule for the 2016 launch.

“The ISS LIS will be integrated onto the Space Test Program H5 spacecraft at NASA’s Johnson Space Center in Houston, where it will undergo testing through August 2015,” says Mike Stewart, a UAH Earth Systems Science Center (ESSC) principal research engineer. “The ISS LIS will be one of 10 instruments on the H5.”

Once on-orbit, the ExPA will be robotically mounted to the EXPRESS Logistics Carrier (ELC), which provides the payload interface to the ISS. The ELC will be attached to the ISS truss structure.

In less than 16 months, UAH’s ESSC and Rotorcraft Systems Engineering and Simulation Center (RSESC) designed, manufactured and space-qualified a new Interface Unit to adapt the legacy TRMM/LIS Electronics Unit and Sensor Unit to the STP H5 spacecraft. The legacy TRMM/LIS Units also required adaptations for the STP H5.

“This development is an excellent follow-on to the original LIS, extending our ability to observe global lightning activity over a longer period of time,” says Dr. Hugh Christian, a principal researcher at ESSC and the principal investigator for the ISS LIS instrument. “Further, ISS LIS will be in a higher orbital plane, thus extending our observations to higher latitudes.”

ISS LIS is designed to detect lightning during the daytime and nighttime. It takes 560 images per second and transforms those images into lightning events using specialized electronic processors. ISS LIS will be launched at about the same time as the Geostationary Lightning Mapper (GLM), much of which was also designed and developed at UAH. It will provide important validation data for GLM.

In addition, there will be important complimentary instruments on the space station that will enable researchers to significantly extend knowledge of Terrestrial Gamma ray Flashes (TGF).

“We hope to continue our studies of lightning and severe weather, investigate the relationship between global lightning activity and climate change, provide validation for the GLM, and improve our understanding of TGFs,” says Dr. Christian.

UAH’s ESSC was the ISS LIS technical and scientific lead. The university’s RSESC was the program manager and lead systems engineer.

“RSESC supported ESSC by providing the engineering and program management to complete the project,” says Sue O’Brien, principal research engineer at RSESC.

“UAH worked with NASA’s Marshall Space Flight Center and provided the information and analysis to complete the certification and associated processes,” O’Brien says.

“We prepared this payload for flight and are ready for delivery to NASA’s Space Test Program in just over a year, which was quite an accomplishment for the team,” O’Brien says. “We are looking forward to the knowledge gained from ISS LIS and what UAH can accomplish in space in the years to come.”

ISS LIS carries forward a long UAH pedigree in space-based lightning research, Dr. Christian says.

“I started working on the concept of space-based lightning observations in 1980,” he says. “Our first instrument, the Optical Transient Detector (OTD) was launch in April 1995.”

Contact Information
Jim Steele
Research Writer/Editor
jim.steele@uah.edu
Phone: 256-824-2772

Jim Steele | newswise
Further information:
http://www.uah.edu

Further reports about: ISS NASA Space Space Center TRMM UAH activity lightning spacecraft

More articles from Physics and Astronomy:

nachricht CCNY-Yale researchers make shape shifting cell breakthrough
12.12.2018 | City College of New York

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>