Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twisting molecules by brute force: A top-down approach

15.12.2011
Molecules that are twisted are ubiquitous in nature, and have important consequences in biology, chemistry, physics and medicine.

Some molecules have unique and technologically useful optical properties; the medicinal properties of drugs depend on the direction of the twist; and within us – think of the double helix – twisted DNA can interact with different proteins.

This twisting is called chirality and researchers at Case Western Reserve University have found they can use a macroscopic brute force to impose and induce a twist in an otherwise non-chiral molecule.

Their new "top-down" approach is described in the Dec. 2 issue of Physical Review Letters.

"The key is that we used a macroscopic force to create chirality down to the molecular level," said Charles Rosenblatt, professor of physics at Case Western Reserve and the senior author on the paper. Rosenblatt started the research with no application in mind. He simply wanted to see if it could be done — essentially scientific acrobatics.

But, he points out, since antiquity chirality has played a role in health, energy, technology and more — but until now, chirality always has been a bottom-up phenomenon. This new top-down approach, if it can be scaled up, could lead to custom designed chirality - and therefore desired properties - in all kinds of things.

Rosenblatt worked with post-doctoral researcher Rajratan Basu, graduate student Joel S. Pendery, and professor Rolfe G. Petschek, of the physics department at Case Western Reserve, and Chemistry Professor Robert P. Lemieux of Queen's University, Kingston, Ontario.

Chirality isn't as simple as a twist in a material. More precisely, a chiral object can't be superimposed on its mirror image. In a "thought experiment", if one's hand can pass through a mirror (like Alice Through the Looking Glass), the hand cannot be rotated so that it matches its mirror image. Therefore one's hand is chiral.

Depending on the twist, scientists define chiral objects as left-handed and right-handed. Objects that can superimpose themselves on their mirror image, such as a wine goblet, are not chiral.

In optics, chiral molecules rotate the polarization of light – the direction depends on whether the molecules are left-handed or right-handed. Liquid crystal computer and television screen manufacturers take advantage of this property to enable you to clearly see images from an angle.

In the drug industry, chirality is crucial.

Two drugs with the identical chemical formula have different uses. Dextromethorphan, which is right-handed, is a cough syrup and levomethorphan, which is lefthanded, is a narcotic painkiller.

The reason for the different effects? The drugs interact differently with biomolecules inside us, depending on the biomolecules' chirality.

After meeting with Lemieux at a conference, the researchers invented a method to create chirality in a liquid crystal at the molecular level.

They treated two glass slides so that cigar-shaped liquid crystal molecules would align along a particular direction. They then created a thin cell with the slides, but rotated the two alignment directions by approximately a 20 degree angle.

The 20-degree difference caused the molecules' orientation to undergo a right-handed helical rotation, like a standard screw, from one side to the other. This is the imposed chiral twist.

The twist, however, is like a tightened spring and costs energy to maintain. To reduce this cost, some of the naturally left-handed molecules in the crystal became right-handed. That's because, inherently, right-handed molecules give rise to a macroscopic right-handed twist, Rosenblatt explained. This shift of molecules from left-handed to right-handed is the induced chirality.

Although the law of entropy suggests there would be nearly identical numbers of left-handed and right-handed molecules, in order to keep total energy cost at a minimum, the right-handed molecules outnumbered the left, he said.

To test for chirality, the researchers applied an electrical field perpendicular to the molecules. If there were no chirality, there would be nothing to see. If there were chirality, the helical twist would rotate in proportion to the amount of right-handed excess.

They observed a modest rotation, which became larger when they increased the twist.

"The effect was occurring everywhere in the cell, but was strongest at the surface," Rosenblatt said.

Scientists have built chirality into optical materials, electrooptic devices, and more by starting at the molecular level. But the researchers are not aware of other techniques that use a macroscopic force to bring chiralty down to molecules.

The researchers are continuing to investigate ways this can be done.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

More articles from Physics and Astronomy:

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

nachricht Stellar cartography
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>