Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twin Keck Telescopes Probe Dual Dust Disks

29.09.2009
Astronomers using the twin 10-meter telescopes at the W. M. Keck Observatory in Hawaii have explored one of the most compact dust disks ever resolved around another star. If placed in our own solar system, the disk would span about four times Earth’s distance from the sun, reaching nearly to Jupiter’s orbit. The compact inner disk is accompanied by an outer disk that extends hundreds of times farther.

The centerpiece of the study is the Keck Interferometer Nuller (KIN), a device that combines light captured by both of the giant telescopes in a way that allows researchers to study faint objects otherwise lost in a star’s brilliant glare. "This is the first compact disk detected by the KIN, and a demonstration of its ability to detect dust clouds a hundred times smaller than a conventional telescope can see," said Christopher Stark, an astronomer at NASA’s Goddard Space Flight Center in Greenbelt, Md., who led the research team.

By merging the beams from both telescopes in a particular way, the KIN essentially creates a precise blind spot that blocks unwanted starlight but allows faint adjacent signals – such as the light from dusty disks surrounding the star – to pass through.

In April 2007, the team targeted 51 Ophiuchi, a young, hot, B-type star about 410 light-years away in the constellation Ophiuchus. Astronomers suspect the star and its disks represent a rare, nearby example of a young planetary system just entering the last phase of planet formation, although it is not yet known whether planets have formed there.

"Our new observations suggest 51 Ophiuchi is a beautiful protoplanetary system with a cloud of dust from comets and asteroids extremely close to its parent star," said Marc Kuchner, an astronomer at Goddard and a member of the research team.

Planetary systems are surprisingly dusty places. Much of the dust in our solar system forms inward of Jupiter's orbit, as comets crumble near the sun and asteroids of all sizes collide. This dust reflects sunlight and sometimes can be seen as a wedge-shaped sky glow – called the zodiacal light – before sunrise or after sunset.

Dusty disks around other stars that arise through the same processes are called "exozodiacal" clouds. "Our study shows that 51 Ophiuchi’s disk is more than 100,000 times denser than the zodiacal dust in the solar system," explained Stark." This suggests that the system is still relatively young, with many colliding bodies producing vast amounts of dust."

To decipher the structure and make-up of the star’s dust clouds, the team combined KIN observations at multiple wavelengths with previous studies from NASA’s Spitzer Space Telescope and the European Southern Observatory’s Very Large Telescope Interferometer in Chile.

The inner disk extends about 4 Astronomical Units (AU) from the star and rapidly tapers off. (One AU is Earth’s average distance from the sun, or 93 million miles.) The disk’s infrared color indicates that it mainly harbors particles with sizes of 10 micrometers – smaller than a grain of fine sand – and larger.

The outer disk begins roughly where the inner disk ends and reaches about 1,200 AU. Its infrared signature shows that it mainly holds grains just one percent the size of those in the inner disk – similar in size to the particles in smoke. Another difference: The outer disk appears more puffed up, extending farther away from its orbital plane than the inner disk.

"We suspect that the inner disk gives rise to the outer disk," explained Kuchner. As asteroid and comet collisions produce dust, the larger particles naturally spiral toward the star. But pressure from the star’s light pushes smaller particles out of the system. This process, which occurs in our own solar system, likely operates even better around 51 Ophiuchi, a star 260 times more luminous than the sun.

The findings appear in the October 1 issue of The Astrophysical Journal.

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Rapid water formation in diffuse interstellar clouds
25.06.2018 | Max-Planck-Institut für Kernphysik

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>