Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twin Keck Telescopes Probe Dual Dust Disks

29.09.2009
Astronomers using the twin 10-meter telescopes at the W. M. Keck Observatory in Hawaii have explored one of the most compact dust disks ever resolved around another star. If placed in our own solar system, the disk would span about four times Earth’s distance from the sun, reaching nearly to Jupiter’s orbit. The compact inner disk is accompanied by an outer disk that extends hundreds of times farther.

The centerpiece of the study is the Keck Interferometer Nuller (KIN), a device that combines light captured by both of the giant telescopes in a way that allows researchers to study faint objects otherwise lost in a star’s brilliant glare. "This is the first compact disk detected by the KIN, and a demonstration of its ability to detect dust clouds a hundred times smaller than a conventional telescope can see," said Christopher Stark, an astronomer at NASA’s Goddard Space Flight Center in Greenbelt, Md., who led the research team.

By merging the beams from both telescopes in a particular way, the KIN essentially creates a precise blind spot that blocks unwanted starlight but allows faint adjacent signals – such as the light from dusty disks surrounding the star – to pass through.

In April 2007, the team targeted 51 Ophiuchi, a young, hot, B-type star about 410 light-years away in the constellation Ophiuchus. Astronomers suspect the star and its disks represent a rare, nearby example of a young planetary system just entering the last phase of planet formation, although it is not yet known whether planets have formed there.

"Our new observations suggest 51 Ophiuchi is a beautiful protoplanetary system with a cloud of dust from comets and asteroids extremely close to its parent star," said Marc Kuchner, an astronomer at Goddard and a member of the research team.

Planetary systems are surprisingly dusty places. Much of the dust in our solar system forms inward of Jupiter's orbit, as comets crumble near the sun and asteroids of all sizes collide. This dust reflects sunlight and sometimes can be seen as a wedge-shaped sky glow – called the zodiacal light – before sunrise or after sunset.

Dusty disks around other stars that arise through the same processes are called "exozodiacal" clouds. "Our study shows that 51 Ophiuchi’s disk is more than 100,000 times denser than the zodiacal dust in the solar system," explained Stark." This suggests that the system is still relatively young, with many colliding bodies producing vast amounts of dust."

To decipher the structure and make-up of the star’s dust clouds, the team combined KIN observations at multiple wavelengths with previous studies from NASA’s Spitzer Space Telescope and the European Southern Observatory’s Very Large Telescope Interferometer in Chile.

The inner disk extends about 4 Astronomical Units (AU) from the star and rapidly tapers off. (One AU is Earth’s average distance from the sun, or 93 million miles.) The disk’s infrared color indicates that it mainly harbors particles with sizes of 10 micrometers – smaller than a grain of fine sand – and larger.

The outer disk begins roughly where the inner disk ends and reaches about 1,200 AU. Its infrared signature shows that it mainly holds grains just one percent the size of those in the inner disk – similar in size to the particles in smoke. Another difference: The outer disk appears more puffed up, extending farther away from its orbital plane than the inner disk.

"We suspect that the inner disk gives rise to the outer disk," explained Kuchner. As asteroid and comet collisions produce dust, the larger particles naturally spiral toward the star. But pressure from the star’s light pushes smaller particles out of the system. This process, which occurs in our own solar system, likely operates even better around 51 Ophiuchi, a star 260 times more luminous than the sun.

The findings appear in the October 1 issue of The Astrophysical Journal.

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>