Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twin jets pinpoint the heart of an active galaxy

15.09.2016

German astronomers have measured the magnetic field in the vicinity of a supermassive black hole. A bright and compact feature of only 2 light days in size was directly observed by a world-wide ensemble of millimeter-wave radio telescopes in the heart of the active galaxy NGC 1052. The observations yield a magnetic field value at the event horizon of the central black hole between 0.02 and 8.3 Tesla. The team, led by the PhD student Anne-Kathrin Baczko, believes that such a large magnetic field provides enough magnetic energy to power the strong relativistic jets in active galaxies.

The technique used to investigate the inner details of NGC 1052 is known as very-long-baseline interferometry, and has the potential to locate compact jet cores at sizes close to the event horizon of the powering black hole. The black hole itself remains invisible.


3-mm GMVA image of NGC 1052 showing a compact region at the centre and two jets (bottom), and a sketch with an accretion disk and two regions of entangled magnetic fields forming two jets (top).

Anne-Kathrin Baczko et al., Astronomy & Astrophysics


Three telescopes participating in the Global Millimetre VLBI Array (GMVA): MPIfR’s Effelsberg 100m (above), IRAM’s Pico Veleta 30m (lower left) and Plateau de Bure 15m telescopes (lower right).

IRAM (Pico Veleta & Plateau de Bure); Norbert Junkes (Effelsberg & Zusammenstellung)

Usually, the black hole position can only be inferred indirectly by tracking the wavelength-dependent jet-core position, which converges to the jet base at zero wavelength. The unknown offset from the jet base and the black hole makes it difficult to measure fundamental physical properties in most galaxies.

The striking symmetry observed in the reported observations between both jets in NGC1052 allows the astronomers to locate the true center of activitiy inside the central feature, which makes, with the exception of our Galactic Centre, the most precisely known location of a super massive black hole in the universe.

Anne-Kathrin Baczko, who performed this work at the Universities of Erlangen-Nürnberg and Würzburg and at the Max-Planck-Institut für Radioastronomie, says: “NGC 1052 is a true key source, since it pinpoints directly and unambiguously the position of a supermassive black hole in the nearby universe.”

NGC 1052 is an elliptical galaxy in a distance of approximately 60 million light years in the direction of the constellation Cetus (the Whale).

The magnetic field by the supermassive black hole was determined measuring the compactness and the brightness of the central region of the elliptical galaxy NGC 1052. This feature is as compact as 57 microarcseconds in diameter, equivalent to the size of a DVD on the surface of the moon.

This amazing resolution was obtained by the Global mm-VLBI Array, a network of radio telescopes in Europe, the USA, and East Asia, that is managed by the Max-Planck-Institut für Radioastronomie. “It yields unprecedented image sharpness, and is soon to be applied to get event-horizon scales in nearby objects”, says Eduardo Ros from the MPI für Radioastronomie and collaborator in the project.

The unique powerful twin jets at a close distance, similar to the well-known active galaxy M 87, puts NGC 1052 in the pole position for future observations of nearby powerful galaxies in the oncoming era opened by the addition of ALMA, the Atacama Large Millimetre array, to the world-wide networks in radio interferometry.

The observation may help solving the long-standing mystery of how the powerful relativistic jets are formed, that can be seen in many active galaxies. The result has important astrophysical implications, since we see that jets can be driven by the extraction of magnetic energy from a rapidly rotating supermassive black hole.

The Global Millimetre VLBI Array consists of telescopes operated by the MPIfR, IRAM, Onsala, Metsähovi, Yebes and the VLBA. The data were correlated at the correlator of the MPIfR in Bonn, Germany. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

MPIfR scientists involved in the project are Anne-Kathrin Baczko, the first author, Eduardo Ros, Thomas Krichbaum, Andrei Lobanov and J. Anton Zensus.

Original Paper:

A highly magnetized twin-jet base pinpoints a supermassive black hole? A.-K. Baczko, R. Schulz, M. Kadler, E. Ros, M. Perucho, T. P. Krichbaum, M. Böck, M. Bremer, C. Grossberger, M. Lindqvist, A. P. Lobanov, K. Mannheim, I. Martí-Vidal, C. Müller, J. Wilms, and J. A. Zensus, 2016, Astronomy & Astrophysics, 593, A47.
www.aanda.org/10.1051/0004-6361/201527951

Local Contact:

Anne-Kathrin Baczko,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-366
E-mail: baczko@mpifr-bonn.mpg.de

Prof. Dr. Eduardo Ros,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-125
E-mail: ros@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2016/10

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht On Mars, sands shift to a different drum
24.05.2019 | University of Arizona

nachricht New Boost for ToCoTronics
23.05.2019 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>