Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning water into ice in the quantum realm

05.08.2019

When you pop a tray of water into the freezer, you get ice cubes. Now, researchers from the University of Colorado Boulder and the University of Toronto have achieved a similar transition using clouds of ultracold atoms.

In a study that will appear August 2 in the journal Science Advances, the team discovered that it could nudge these quantum materials to undergo transitions between "dynamical phases"--essentially, jumping between two states in which the atoms behave in completely different ways.


Graphic depicting the weak interactions between neutral atoms in an ultracold gas.

Credit: Steven Burrows/JILA

"This happens abruptly, and it resembles the phase transitions we see in systems like water becoming ice," said study co-author Ana Maria Rey. "But unlike that tray of ice cubes in the freezer, these phases don't exist in equilibrium. Instead, atoms are constantly shifting and evolving over time."

The findings, she added, provide a new window into materials that are hard to investigate in the laboratory.

"If you want to, for example, design a quantum communications system to send signals from one place to another, everything will be out of equilibrium," said Rey, a fellow at JILA, a joint institute between CU Boulder and the National Institute of Standards and Technology (NIST). "Such dynamics will be the key problem to understand if we want to apply what we know to quantum technologies."

Scientists have observed similar transitions before in ultracold atoms, but only among a few dozen charged atoms, or ions.

Rey and her colleagues, in contrast, turned to clouds made up of tens of thousands of uncharged, or neutral, fermionic atoms. Fermionic atoms, she said, are the introverts of the periodic table of elements. They don't want to share their space with their fellow atoms, which can make them harder to control in cold atom laboratories.

"We were really wandering in a new territory not knowing what we would find," said study coauthor Joseph Thywissen, a professor of physics at the University of Toronto.

To navigate that new territory, the researchers took advantage of the weak interactions that do occur between neutral atoms--but only when those atoms bump into each other in a confined space.

First, Thywissen and his team in Canada cooled a gas made up of neutral potassium atoms to just a fraction of a degree below absolute zero. Next, they tuned the atoms so that their "spins" all pointed in the same direction.

Such spins are a natural property of all atoms, Thywissen explained, a bit like Earth's magnetic field, which currently points to the north.

Once the atoms were all standing in formation, the group then tweaked them to change how strongly they interacted with each other. And that's where the fun began.

"We ran the experiment using one kind of magnetic field, and the atoms danced in one way," Thywissen said. "Later, we ran the experiment again with a different magnetic field, and the atoms danced in a completely different way."

In the first dance--or when the atoms barely interacted at all--these particles fell into chaos. The atomic spins began to rotate at their own rates and quickly all pointed in different directions.

Think of it like standing in a room filled with thousands of clocks with second hands all ticking at different tempos.

But that was only part of the story. When the group increased the strength of the interactions between atoms, they stopped acting like disordered individuals and more like a collective. Their spins still ticked, in other words, but they ticked in sync.

In this synchronous phase, "the atoms are no longer independent," said Peiru He, a graduate student in physics at CU Boulder and one of the lead authors of the new paper. "They feel each other, and the interactions will drive them to align with each other."

With the right tweaks, the group also discovered that it could do something else: turn back time, causing both the synchronized and disordered phases to revert back to their initial state.

In the end, the researchers were only able to maintain those two different dynamical phases of matter for about 0.2 seconds. If they can increase that time, He said, they may be able to make even more interesting observations.

"In order to see richer physics, we probable have to wait longer," He said.

###

Other coauthors on the paper include Scott Smale, Ben Olsen, Kenneth Jackson, Haille Sharum and Stefan Trotzky from the University of Toronto and Jamir Marino from JILA.

Daniel Strain | EurekAlert!
Further information:
https://www.colorado.edu/today/2019/08/01/turning-water-ice-quantum-realm
http://dx.doi.org/10.1126/sciadv.aax1568

More articles from Physics and Astronomy:

nachricht Moon glows brighter than sun in images from NASA's Fermi
16.08.2019 | NASA/Goddard Space Flight Center

nachricht Tiny lensless endoscope captures 3D images of objects smaller than a cell
16.08.2019 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

Jena Laser Technology Conference brings together top international researchers

12.08.2019 | Event News

 
Latest News

Climate change 'disrupts' local plant diversity, study reveals

16.08.2019 | Life Sciences

Finnish discovery brings new insight on the functioning of the eye and retinal diseases

16.08.2019 | Life Sciences

A Rescue Plan for the Ocean

16.08.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>