Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning on Frustration: 16 Atomic Ions Simulate a Quantum Antiferromagnet

07.05.2013
Frustration crops up throughout nature when conflicting constraints on a physical system compete with one another.

The way nature resolves these conflicts often leads to exotic phases of matter that are poorly understood. This week’s issue of Science Magazine features new results from the research group of Christopher Monroe at the JQI, where they explored how to frustrate a quantum magnet comprised of sixteen atomic ions – to date the largest ensemble of qubits to perform a simulation of quantum matter.


E. Edwards/JQI

Artists rendition of field lines due to a 16 ion antiferromagnet

Originating in large part with Richard Feynman’s 1982 proposal, quantum simulation has evolved into a field where scientists use a controllable quantum system to study a second, less experimentally feasible quantum phenomenon. In short, a full-scale quantum computer does not yet exist and classical computers often cannot solve quantum problems, thus a “quantum simulator” presents an attractive alternative for gaining insight into the behaviors of complex material. Says Monroe, “With just 30 or so qubits, we should be able to study ordering and dynamics of this many-body system that cannot be predicted using conventional computers. In the future, make that a few hundred qubits and there’s simply not enough room in the universe for all the memory required to do the calculation.”

In this experiment, JQI physicists engineer a quantum magnet using lasers and ion qubits. The ion trap platform has long been a leader in the field of quantum information and is an ideal playground for quantum simulations (see image 1 in gallery of ion trap used here). Ions are charged particles that interact strongly via the Coulomb force, which is an attraction/repulsion that decreases as particles separate. When a handful of positively charged ytterbium ions are thrown together, they repel each other, and, for this oblong ion trap, form a linear crystal (see gallery image 2 of real camera images of single ions arranged in a crystal). Each ion has two internal energy states that make up a qubit.

Laser beams can manipulate the Coulomb force to create tunable, long range magnetic-like interactions, where each ion qubit represents a tiny magnet*. Imagine that invisible springs connect the ions together. Vibrations occurring on one side of the crystal affect the entire crystal. This is called collective motion and is harnessed to generate a force that depends on how a magnet is oriented (which state the qubit is in). The team can program this state-dependent force by simultaneously applying multiple laser beams, whose colors (frequencies) are specially chosen with respect to the internal vibrations of the ion crystal. The amount of influence each magnet has on the rest of the chain primarily depends on the choice of laser frequencies (See Frequency Sidebar at the bottom of this article for more information). The crystal geometry has little to do with the interactions. In fact, for some laser configurations the ions that are farthest apart in space interact most strongly.

Phenomena due to this type of magnet-magnet interaction alone can be explained without quantum physics. An additional uniform magnetic field, (here created with yet another laser beam), is necessary for introducing quantum phase transitions and entanglement. This added magnetic field (oriented perpendicular to the direction of the interactions) induces quantum fluctuations that can drive the system into different energy levels.

In the experiment, the long-range ion-ion interaction and a large effective magnetic field are turned on simultaneously. In the beginning of the simulation the ion magnets are oriented along the direction of the effective magnetic field. In the quantum world, if a magnet is pointing along some direction with certainty, its magnetic state along any perpendicular direction is totally random. Hence the system is in a disordered state along the perpendicular direction of magnetic [spin] interactions.

During the quantum simulation the magnetic field is reduced and the ion crystal goes from being in this disordered state, with each ion magnet pointing along a random direction, to being determined by the form of the magnetic interactions. For some cases of antiferromagnetic (AFM) interactions, the spins will end in a simple up-down-up-down-etc. configuration. With the turn of some knobs, the team can cause the AFM interactions to instead frustrate the crystal. For example, nearest neighbor AFM interactions can compete strongly with the next-nearest neighbor interactions and even the next-next-nearest neighbor constraints. The crystal can easily form various antiferromagnetic combinations, instead of the simple nearest neighbor antiferromagnet (up down up down). In fact, with a few technical upgrades, the researchers can potentially engineer situations where the magnets can reside in an exponentially large number of antiferromagnetic states, generating massive quantum entanglement that accompanies this frustration.

Previously, this same group of researchers performed quantum simulations of a ferromagnet (all magnets oriented same direction) and of the smallest system exhibiting frustration. Their ability to utilize the collective motion allows them to explore different facets of quantum magnetism. The team can ‘at will’ modify how the different collective modes contribute to magnetic order by merely changing the laser colors and/or the ion separation. This new work demonstrates the versatility of their system, even as particles are added. As lead author Dr. Rajibul Islam explains “We have a knob that adjusts the range of the interaction, something that is unavailable in real materials. This type of simulation could therefore help in the design of new types of materials that possess exotic properties, with potential applications to electrical transport, sensors, or transducers.”

*Physicists use mathematical spin models, such as the Ising model studied here, to understand quantum magnets, thus in this news article, for clarity the ions are called “magnets.” In the language of the Science Magazine article, they are called “spins”.

Frequency Sidebar:

This experiment is all about frequency. The ions themselves are vibrating at a frequency determined by an electrostatic trap--about 1 MHz or 1 million vibrations/second. The ion qubit is made from two internal energy levels that are separated in frequency by about 12 GHz or 12 billion vibrations/second (microwave domain). When radiation with a frequency that matches either of these frequencies shines onto the ion, then the radiation is said to be in resonance with that transition. For example, 12 GHz microwave radiation will make the ion qubit cycle between two internal states. If MHz radiation is coupled to the ion, it will begin vibrating. In the quantum regime, the quanta of vibration called a phonon can be controllably added and removed from the system. These phonons act as communication channels for the magnets, and are instrumental in generating rich varieties of interactions.

Scientists must be clever about generating frequencies. We are constantly being bathed in radiation from cellphones (GHz), infrared (terahertz or 1000 GHz), UV radiation (petahertz or 1 million GHz), and more--much of this goes unnoticed. The ion here is sensitive to only very precise frequencies. To get that qubit to flip flop between two qubit states, they need to apply a radiation at precisely 12.642819 GHz. To create spin-spin interactions, they also need to simultaneously excite its motion--it is vibrating at a frequency that is 10,000 times smaller. Lasers are the key--here at 369 nm, just barely in the ultraviolet regime. Previously, a JQI news item described how they can use a pulsed laser to generate 12.642819 GHz. Scientists control the frequency, power and the direction of light waves very precisely by hitting the laser beams with sound waves and oscillating electric fields (in devices such as the acousto- and electro-optic modulators). These devices act to add lower frequencies necessary for exciting the motion in the trap as well as fine tune the main laser beam to address certain atomic transitions. This method, called modulation, is versatile and is one of the key features that make this and other quantum physics experiments possible.

"Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator," R. Islam, C. Senko, W. C. Campbell, S. Korenblit, J. Smith, A. Lee, E. E. Edwards, C.-C. J. Wang, J. K. Freericks, C. Monroe, Science 583-587 (May 3 2013)

Christopher Monroe | Newswise
Further information:
http://www.umd.edu

More articles from Physics and Astronomy:

nachricht Ultra ultrasound to transform new tech
17.01.2019 | Swansea University

nachricht Fraunhofer FHR radar analyzes deorbiting systems for more sustainability in space travel
17.01.2019 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

Ultra ultrasound to transform new tech

17.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>