Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning entanglement upside down

23.05.2018

A team of physicists from ICTP-Trieste and IQOQI-Innsbruck has come up with a surprisingly simple idea to investigate quantum entanglement of many particles. Instead of digging deep into the properties of quantum wave functions - which are notoriously hard to experimentally access - they propose to realize physical systems governed by the corresponding entanglement Hamiltonians. By doing so, entanglement properties of the original problem of interest become accessible via well-established tools. This radically new approach could help to improve understanding of quantum matter and open the way to new quantum technologies.

Quantum entanglement forms the heart of the second quantum revolution: it is a key characteristic used to understand forms of quantum matter, and a key resource for present and future quantum technologies.


Physically, entangled particles cannot be described as individual particles with defined states, but only as a single system. Even when the particles are separated by a large distance, changes in one particle also instantaneously affect the other particle(s). The entanglement of individual particles - whether photons, atoms or molecules - is part of everyday life in the laboratory today.

In many-body physics, following the pioneering work of Li and Haldane, entanglement is typically characterized by the so-called entanglement spectrum: it is able to capture essential features of collective quantum phenomena, such as topological order, and at the same time, it allows to quantify the 'quantumness' of a given state - that is, how challenging it is to simply write it down on a classical computer.

... more about:
»Nature Physics »QUANTUM »physics »spectrum

Despite its importance, the experimental methods to measure the entanglement spectrum quickly reach their limits - until today, these spectra have been measured only in few qubits systems. With an increasing number of particles, this effort becomes hopeless as the complexity of current techniques increases exponentially.

"Today it is very hard to perform an experiment beyond few particles that allows us to make concrete statements about entanglement spectra," explains Marcello Dalmonte from the International Centre for Theoretical Physics (ICTP) in Trieste, Italy. Together with Peter Zoller and Benoît Vermersch from the Department of Theoretical Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences, he has now found a surprisingly simple way to investigate quantum entanglement directly.

The physicists turn the concept of quantum simulation upside down by no longer simulating a certain physical system in the quantum simulator, but directly simulating its entanglement Hamiltonian operator, whose spectrum of excitations immediately relates to the entanglement spectrum.

Demonstrate quantum advantage

"Instead of simulating a specific quantum problem in the laboratory and then trying to measure the entanglement properties, we propose simply turning the tables and directly realizing the corresponding entanglement Hamiltonian, which gives immediate and simple access to entanglement properties, such as the entanglement spectrum" explains Marcello Dalmonte. "Probing this operator in the lab is conceptually and practically as easy as probing conventional many-body spectra, a well-established lab routine." Furthermore, there are hardly any limits to this method with regard to the size of the quantum system.

This could also allow the investigation of entanglement spectra in many-particle systems, which is notoriously challenging to address with classical computers. Dalmonte, Vermersch and Zoller describe the radically new method in a current paper in Nature Physics and demonstrate its concrete realization on a number of experimental platforms, such as atomic systems, trapped ions and also solid-state systems based on superconducting quantum bits.

The work was financially supported by the Austrian Science Fund FWF and the European Union, among others.

Publication: Quantum simulation and spectroscopy of entanglement Hamiltonian. Marcello Dalmonte, Benoît Vermersch, Peter Zoller. Nature Physics 2018 DOI: 10.1038/s41567-018-0151-7 (arXiv: 1707.04455)

Contacts:
Benoît Vermersch
Department of Theoretical Physics
University of Innsbruck
phone: +43 512 507 52203
email: benoit.vermersch@uibk.ac.at
web: http://www.uibk.ac.at/th-physik/

Marcello Dalmonte
International Centre for Theoretical Physics
phone: +39 040 2240 350
email: mdalmont@ictp.it
web: https://www.ictp.it

Christian Flatz
Public Relations Office
University of Innsbruck
phone: +43 512 507 32022
email: christian.flatz@uibk.ac.at
Twitter: @christianflatz

Mary Ann Williams
Public Information Office
International Centre for Theoretical Physics
phone: +39 040 2240 603
email: mwilliams@ictp.it

Weitere Informationen:

http://dx.doi.org/10.1038/s41567-018-0151-7 - Quantum simulation and spectroscopy of entanglement Hamiltonian. Marcello Dalmonte, Benoît Vermersch, Peter Zoller. Nature Physics 2018
http://arxiv.org/abs/1707.04455 - Preprint on arXiv
http://www.uibk.ac.at/th-physik/ - Department of Theoretical Physics, University of Innsbruck
http://www.ictp.it/ - International Centre for Theoretical Physics

Dr. Christian Flatz | Universität Innsbruck

Further reports about: Nature Physics QUANTUM physics spectrum

More articles from Physics and Astronomy:

nachricht Matter falling into a black hole at 30 percent of the speed of light
24.09.2018 | Royal Astronomical Society

nachricht Scientists solve the golden puzzle of calaverite
24.09.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>