Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning entanglement upside down

23.05.2018

A team of physicists from ICTP-Trieste and IQOQI-Innsbruck has come up with a surprisingly simple idea to investigate quantum entanglement of many particles. Instead of digging deep into the properties of quantum wave functions - which are notoriously hard to experimentally access - they propose to realize physical systems governed by the corresponding entanglement Hamiltonians. By doing so, entanglement properties of the original problem of interest become accessible via well-established tools. This radically new approach could help to improve understanding of quantum matter and open the way to new quantum technologies.

Quantum entanglement forms the heart of the second quantum revolution: it is a key characteristic used to understand forms of quantum matter, and a key resource for present and future quantum technologies.


Physically, entangled particles cannot be described as individual particles with defined states, but only as a single system. Even when the particles are separated by a large distance, changes in one particle also instantaneously affect the other particle(s). The entanglement of individual particles - whether photons, atoms or molecules - is part of everyday life in the laboratory today.

In many-body physics, following the pioneering work of Li and Haldane, entanglement is typically characterized by the so-called entanglement spectrum: it is able to capture essential features of collective quantum phenomena, such as topological order, and at the same time, it allows to quantify the 'quantumness' of a given state - that is, how challenging it is to simply write it down on a classical computer.

... more about:
»Nature Physics »QUANTUM »physics »spectrum

Despite its importance, the experimental methods to measure the entanglement spectrum quickly reach their limits - until today, these spectra have been measured only in few qubits systems. With an increasing number of particles, this effort becomes hopeless as the complexity of current techniques increases exponentially.

"Today it is very hard to perform an experiment beyond few particles that allows us to make concrete statements about entanglement spectra," explains Marcello Dalmonte from the International Centre for Theoretical Physics (ICTP) in Trieste, Italy. Together with Peter Zoller and Benoît Vermersch from the Department of Theoretical Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences, he has now found a surprisingly simple way to investigate quantum entanglement directly.

The physicists turn the concept of quantum simulation upside down by no longer simulating a certain physical system in the quantum simulator, but directly simulating its entanglement Hamiltonian operator, whose spectrum of excitations immediately relates to the entanglement spectrum.

Demonstrate quantum advantage

"Instead of simulating a specific quantum problem in the laboratory and then trying to measure the entanglement properties, we propose simply turning the tables and directly realizing the corresponding entanglement Hamiltonian, which gives immediate and simple access to entanglement properties, such as the entanglement spectrum" explains Marcello Dalmonte. "Probing this operator in the lab is conceptually and practically as easy as probing conventional many-body spectra, a well-established lab routine." Furthermore, there are hardly any limits to this method with regard to the size of the quantum system.

This could also allow the investigation of entanglement spectra in many-particle systems, which is notoriously challenging to address with classical computers. Dalmonte, Vermersch and Zoller describe the radically new method in a current paper in Nature Physics and demonstrate its concrete realization on a number of experimental platforms, such as atomic systems, trapped ions and also solid-state systems based on superconducting quantum bits.

The work was financially supported by the Austrian Science Fund FWF and the European Union, among others.

Publication: Quantum simulation and spectroscopy of entanglement Hamiltonian. Marcello Dalmonte, Benoît Vermersch, Peter Zoller. Nature Physics 2018 DOI: 10.1038/s41567-018-0151-7 (arXiv: 1707.04455)

Contacts:
Benoît Vermersch
Department of Theoretical Physics
University of Innsbruck
phone: +43 512 507 52203
email: benoit.vermersch@uibk.ac.at
web: http://www.uibk.ac.at/th-physik/

Marcello Dalmonte
International Centre for Theoretical Physics
phone: +39 040 2240 350
email: mdalmont@ictp.it
web: https://www.ictp.it

Christian Flatz
Public Relations Office
University of Innsbruck
phone: +43 512 507 32022
email: christian.flatz@uibk.ac.at
Twitter: @christianflatz

Mary Ann Williams
Public Information Office
International Centre for Theoretical Physics
phone: +39 040 2240 603
email: mwilliams@ictp.it

Weitere Informationen:

http://dx.doi.org/10.1038/s41567-018-0151-7 - Quantum simulation and spectroscopy of entanglement Hamiltonian. Marcello Dalmonte, Benoît Vermersch, Peter Zoller. Nature Physics 2018
http://arxiv.org/abs/1707.04455 - Preprint on arXiv
http://www.uibk.ac.at/th-physik/ - Department of Theoretical Physics, University of Innsbruck
http://www.ictp.it/ - International Centre for Theoretical Physics

Dr. Christian Flatz | Universität Innsbruck

Further reports about: Nature Physics QUANTUM physics spectrum

More articles from Physics and Astronomy:

nachricht Stardust in the Antarctic snow provides information on the environment of the solar system
21.08.2019 | Technische Universität München

nachricht Spinning lightwaves on a one-way street
20.08.2019 | De Gruyter

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Shape-shifting sheets

21.08.2019 | Materials Sciences

Study reveals profound patterns in globally important algae

21.08.2019 | Life Sciences

New tools to minimize risks in shared, augmented-reality environments

21.08.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>