Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning back time by controlling magnetic interactions

30.03.2015

In a publication in Nature Communications, researchers at the Max Planck Institute for the Structure and Dynamics of Matter laid the theoretical foundation for more efficient magnetic storage.

In many materials, macroscopic magnetic properties emerge when microscopically small magnets align in a fixed pattern throughout the whole solid. In a publication in Nature Communications, Johan Mentink, Karsten Balzer and Martin Eckstein from the University of Hamburg at the Center for Free-Electron Laser Science (CFEL) and the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) have predicted that the interactions causing this alignment can be changed almost instantaneously and reversibly under the influence of a laser pulse. In future, this effect may be used for the development of faster magnetic storage. Besides this, the finding implies the highly counter-intuitive consequence that the magnetic dynamics can effectively run backwards in time under the influence of a sufficiently strong time-periodic laser field.


Illustration of time reversal: under the influence of a periodic electric field from a laser (yellow), the evolution of the spins (red) goes backward in time.

Graphics: J.M. Harms, MPSD

The strongest interactions in magnetic materials are called exchange interactions since they are caused by the exchange of electrons between individual microscopic magnets, called spins. A spin can feel a force from its neighbor that is up to a hundred times larger than the magnetic fields available in the laboratory. Johan Mentink and collaborators have shown that the electric field of the laser can influence the electrons during this exchange process and thus modify the interaction. Owing to the strength of the exchange interactions, this holds the promise to achieve a control of magnetism on the fastest possible timescale, with high relevance for technological applications such as magnetic storage.

While it has been demonstrated before that exchange interactions can be modified very rapidly, the ultimate control of exchange interactions would be achieved when one can selectively strengthen or weaken the interactions when the electric field is turned on and off, for example. This has now been demonstrated by exposing the magnetic material to a time-periodic electric field that is deliberately tuned to avoid a direct excitation of the electrons. Interestingly, even for the model system considered, this protocol already displays a rich control: the exchange interaction can be enhanced, weakened, and even reverse sign, thus favoring parallel instead of anti-parallel alignment of neighboring spins.

Quite surprisingly, upon changing the sign of the exchange interaction by the periodic electric laser field, it was observed that the spin dynamics turns back time. Mentink: ‘This demonstration caused a lot of excitement during our studies. Intuitively, one expects that a sign change of the interaction causes a rapid change of the magnetic state, but we find instead that the spins evolve back to their original orientation without any signature of a different magnetic state’. As a result, our studies do not only have high relevance for technological applications, but also for fundamental studies on the time-reversibility of quantum systems.

Contact persons:

Prof. Dr. Martin Eckstein
Max-Planck-Institut für Struktur und Dynamik der Materie
Luruper Chaussee 149
22761 Hamburg / Germany
Tel.:+49 (0)40 8998-6270
Email: martin.eckstein@mpsd.cfel.de

Dr. Johan Mentink
Radboud University
Institute for Molecules and Materials
Heyendaalseweg 135
6525 AJ Nijmegen / The Netherlands
Tel.: +31 (0)24 3652903
Email: j.mentink@science.ru.nl

Original publication:
Johan. H. Mentink, Karsten Balzer, and Martin Eckstein, "Ultrafast and reversible control of the exchange interaction in Mott insulators”, Nature Communications, 2015, DOI: 10.1038/ncomms7708

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms7708 Original publication
http://www.mpsd.mpg.de/en/research/cmd/theo Research group of Prof. Dr. Martin Eckstein
http://www.mpsd.mpg.de/en Max Planck Institute for the Structure and Dynamics of Matter

Dr. Joerg Harms | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>