Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning back time by controlling magnetic interactions

30.03.2015

In a publication in Nature Communications, researchers at the Max Planck Institute for the Structure and Dynamics of Matter laid the theoretical foundation for more efficient magnetic storage.

In many materials, macroscopic magnetic properties emerge when microscopically small magnets align in a fixed pattern throughout the whole solid. In a publication in Nature Communications, Johan Mentink, Karsten Balzer and Martin Eckstein from the University of Hamburg at the Center for Free-Electron Laser Science (CFEL) and the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) have predicted that the interactions causing this alignment can be changed almost instantaneously and reversibly under the influence of a laser pulse. In future, this effect may be used for the development of faster magnetic storage. Besides this, the finding implies the highly counter-intuitive consequence that the magnetic dynamics can effectively run backwards in time under the influence of a sufficiently strong time-periodic laser field.


Illustration of time reversal: under the influence of a periodic electric field from a laser (yellow), the evolution of the spins (red) goes backward in time.

Graphics: J.M. Harms, MPSD

The strongest interactions in magnetic materials are called exchange interactions since they are caused by the exchange of electrons between individual microscopic magnets, called spins. A spin can feel a force from its neighbor that is up to a hundred times larger than the magnetic fields available in the laboratory. Johan Mentink and collaborators have shown that the electric field of the laser can influence the electrons during this exchange process and thus modify the interaction. Owing to the strength of the exchange interactions, this holds the promise to achieve a control of magnetism on the fastest possible timescale, with high relevance for technological applications such as magnetic storage.

While it has been demonstrated before that exchange interactions can be modified very rapidly, the ultimate control of exchange interactions would be achieved when one can selectively strengthen or weaken the interactions when the electric field is turned on and off, for example. This has now been demonstrated by exposing the magnetic material to a time-periodic electric field that is deliberately tuned to avoid a direct excitation of the electrons. Interestingly, even for the model system considered, this protocol already displays a rich control: the exchange interaction can be enhanced, weakened, and even reverse sign, thus favoring parallel instead of anti-parallel alignment of neighboring spins.

Quite surprisingly, upon changing the sign of the exchange interaction by the periodic electric laser field, it was observed that the spin dynamics turns back time. Mentink: ‘This demonstration caused a lot of excitement during our studies. Intuitively, one expects that a sign change of the interaction causes a rapid change of the magnetic state, but we find instead that the spins evolve back to their original orientation without any signature of a different magnetic state’. As a result, our studies do not only have high relevance for technological applications, but also for fundamental studies on the time-reversibility of quantum systems.

Contact persons:

Prof. Dr. Martin Eckstein
Max-Planck-Institut für Struktur und Dynamik der Materie
Luruper Chaussee 149
22761 Hamburg / Germany
Tel.:+49 (0)40 8998-6270
Email: martin.eckstein@mpsd.cfel.de

Dr. Johan Mentink
Radboud University
Institute for Molecules and Materials
Heyendaalseweg 135
6525 AJ Nijmegen / The Netherlands
Tel.: +31 (0)24 3652903
Email: j.mentink@science.ru.nl

Original publication:
Johan. H. Mentink, Karsten Balzer, and Martin Eckstein, "Ultrafast and reversible control of the exchange interaction in Mott insulators”, Nature Communications, 2015, DOI: 10.1038/ncomms7708

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms7708 Original publication
http://www.mpsd.mpg.de/en/research/cmd/theo Research group of Prof. Dr. Martin Eckstein
http://www.mpsd.mpg.de/en Max Planck Institute for the Structure and Dynamics of Matter

Dr. Joerg Harms | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Physics and Astronomy:

nachricht New Insight into Molecular Processes
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Exoplanet stepping stones
21.11.2018 | W. M. Keck Observatory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>