Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turbulence in a crystal

01.03.2013
Scientist observe the impact of subtle changes in the electron distribution of a crystal on its atomic structure on ultrashort time scales

When a crystal is hit by an intense ultrashort light pulse, its atomic structure is set in motion. A team of scientists from the Max Planck Institute of Quantum Optics (MPQ), the Technischen Universität München (TUM), the Fritz-Haber Institute in Berlin (FHI) and the Universität Kassel can now observe how the configuration of electrons and atoms in titanium dioxide, a semiconductor, changes under the impact of an ultraviolet laser pulse, confirming that even subtle changes in the electron distribution caused by the excitation can have a considerable impact on the whole crystal structure.


Picture 1: An ultraviolet light pulse hits the titanium dioxide crystal. The laser pulse induces a redistribution of weakly bound electrons, which leads to a shift of the equilibrium position of the atoms in the crystal lattice.
©Thorsten Naeser


Picture 2: Schematic representation of the experiment. An extremely short ultraviolet pulse creates hot excited electrons in the semiconductor titanium dioxide. This changes the spatial distribution of the electrons within the lattice, resulting in a shift of the potentials for the atomic cores, i.e., their rest position (central picture). The subsequent cooling of the electrons, which takes about 20 femtoseconds, further amplifies this effect (right picture). The combined effect of electron excitation and cooling leads to a force on the oxygen atomic cores, resulting in a coherent oscillation within the crystal structure.
©Alexander Paarmann

Knowledge regarding the interaction between light and solid matter on an atomic scale is still comparable to a map with many blank spots. A number of phenomena are still waiting to be observed or understood. A new, up to date unknown aspect of the interplay between light and matter has now been examined by a team of scientists at the Max Planck Institute of Quantum Optics (MPQ), the Technischen Universität München (TUM), the Fritz-Haber Institute in Berlin (FHI) and the Universität Kassel using intensive ultraviolet laser pulses with only a few femtoseconds duration (one femtosecond is a millionth of a billionth of a second).

The physicists illuminated a titanium dioxide crystal (consisting of titanium and oxygen atoms) with an intense ultraviolet laser pulse of less than five femtoseconds duration. The laser pulse excites the valence electrons in the crystal and generates a small number of hot electrons with a temperature of several thousand Kelvin. Valence electrons are electrons that are only weakly bound to the atoms in a crystal that interact strongly with each other and therefore form the bond between the atoms in a crystal. The continuous interplay between the positions of the atomic cores and the valence electrons determines the material characteristics such as electric conductivity, optical properties or the crystal lattice structure.

Following the first, intense laser pulse, the changes in the reflectivity of the crystal on the femtosecond timescale were observed by a second, weak light pulse. This measurement provides the scientists with information on the changes in the crystal induced by the first laser pulse: the intense ultraviolet laser pulse did not only heat up the valence electrons but also changed the electron distribution within the lattice. The electron density was reduced around the oxygen atoms and increased around the titanium atoms. This redistribution of the electrons causes a shift of the equilibrium position of the oxygen atoms relative to the titanium atoms, which leads to an oscillatory motion of the oxygen atoms around the new equilibrium position. In an intuitive picture the oxygen atoms in the crystal potential surface can be compared to a ball in a bowl. In the ground state, the ball is at rest at the center of the bowl. The excitation of the electrons corresponds to a sudden shift of the bowl, and the ball oscillates around its new minimum position.
In their experiment, the scientists also observed a suprising effect: after the excitation with the laser pulse, the electrons cool down to room temperature within about 20 femtoseconds, while the crystal is only heated slightly on these timescales. The cooling of the electrons led to an additional significant change in the valence electron distribution. In consequence, the equilibrium position of the lattice was shifted even further from the initial position of the ground state. Such a dependence of the crystal structure on the electron temperature has long been predicted theoretically. Now it could be observed experimentally for the first time. The results show that even subtle changes in the electron distribuition can have a significant impact on the equilibrium state of a crystal. The understanding of such phenomena can be helpful in the design of new materials. [Thorsten Naeser]

Original publication:

Elisabeth M. Bothschafter, Alexander Paarmann, Eeuwe S. Zijlstra, Nicholas Karpowicz, Martin E. Garcia, Reinhard Kienberger and Ralph Ernstorfer

“Ultrafast evolution of the excited-state potential energy surface of TiO2 single crystals induced by carrier cooling”
Phys. Rev. Lett. 110, 067402 (2013).

Further information:

Elisabeth Bothschafter
Laboratory for Attosecond Physics
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1, 85748 Garching
Phone: +49 (0) 89 / 32 905 – 236
E-mail: elisabeth.bothschafter@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics
Phone: +49 (0) 89 / 32 905 -213
Fax: +49 (0) 89 / 32 905 -200
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>