Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TUM spin-off develops magnetic cooling system for extremely low temperatures: Cooling for quantum electronics

04.06.2019

The start-up kiutra is the first company in the world to have succeeded in developing a permanent magnetic cooling system to reach temperatures close to absolute zero. Such temperatures are, for example, required for the operation of quantum computers. The system was set up by a team of researchers from the Physics Department at the Technical University of Munich (TUM).

Low temperatures are essential for basic research in the field of quantum physics. More and more technologies based on quantum mechanics are now also making the leap from the laboratory to commercial applications.


Alexander Regnat, Prof. Christian Pfleiderer, Jan Spallek and Tomek Schulz with their cooling system for extremely low temperatures.

Image: W. Schürmann / TUM

High-sensitivity detectors and quantum computers are two well-known examples. However, very low temperatures close to absolute zero (around -273°C) are generally required for the operation of sensitive quantum technology. Demand for effective cooling solutions is therefore rapidly growing.

TUM researchers Alexander Regnat, Jan Spallek, Tomek Schulz and Prof. Christian Pfleiderer are seeking to meet that demand. All four are currently working on their prototype at the TUM Physics Department. According to Alexander Regnat, there is already the prospect of taking on more staff and setting up separate headquarters.

The team of scientist came up with the idea during their work at the TUM. Again and again, they were faced with the limits of conventional methods for reaching such low temperatures. The group therefore developed its own technology to ensure permanent cooling and founded kiutra GmbH in the summer of 2018.

Magnetic cooling

Liquefied gases are usually used to generate very low temperatures. Where constant temperatures close to absolute zero are needed, the extremely rare and expensive isotope helium-3 has to date been used. There are magnetic cooling processes, which can generate the requisite temperatures using inexpensive solids – but usually only for a limited period of time.

Concepts for permanent magnetic cooling have been around for many years. "However, technical implementation is extremely challenging and this has previously prevented the development of a product for widespread use," explains Tomek Schulz.

"We are the world's first commercial supplier of a cooling system that can magnetically achieve temperatures close to absolute zero ( near -273°C) on a permanent basis," says Alexander Regnat. "Our great advantage is that we do not need expensive helium-3. All we need is electricity."

Promoting entrepreneurship at TUM

TUM creates more than 70 spin-offs every year. This project is a spin-off of the Physics Department and the team is currently in receipt of an EXIST start-up grant. The program helps students, graduates and scientists to launch their new businesses. kiutra also received validation support from the Free State of Bavaria in 2016 and 2017.

A few days ago, a consortium consisting of the lead investor High-Tech Gründerfonds (HTGF), Deep-Tech VC APEX Ventures and UnternehmerTUM Initiative for Industrial Innovators, invested a seven-figure sum in the TUM spin-off. The new capital will be used to further expand global sales and production capacity for the rapidly growing quantum technology market.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Christian Pfleiderer
Technical University of Munich
Professorship for the Topology of Correlated Systems
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 14720
E-mail: christian.pfleiderer@frm2.tum.de
Internet: http://www.e21.ph.tum.de

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/details/article/35478/ Link to the press release
https://www.tum.de/nc/en/tum-business/entrepreneurship/ Entrepreneurship at TUM
https://www.tum.de/nc/en/tum-business/entrepreneurship/our-entrepreneurs/compani... Startups at TUM

Dr. Ulrich Marsch | Technische Universität München

More articles from Physics and Astronomy:

nachricht New method for using spin waves in magnetic materials
22.11.2019 | https://idw-online.de/de/institution72

nachricht Extremely energetic particles coupled with the violent death of a star for the first time
22.11.2019 | University of Copenhagen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

New antenna tech to equip ceramic coatings with heat radiation control

22.11.2019 | Materials Sciences

Pollinator friendliness can extend beyond early spring

22.11.2019 | Life Sciences

Wound healing in mucous tissues could ward off AIDS

22.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>