Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TUM and JGU activate new source of ultra-cold neutrons

09.11.2016

Collaborative project results in the construction of a second UCN source at the TRIGA research reactor in Mainz / Blueprint for Munich-based high-efficiency source

Researchers from the Technical University of Munich (TUM) and Johannes Gutenberg University Mainz (JGU) have opened a new chapter in their long-standing collaboration concerning the generation of ultra-cold neutrons (UCN). A second source of ultra-cold neutrons has recently been installed at the TRIGA research reactor in Mainz.


Researchers from TUM and JGU during installation work on the Mainz TRIGA UCN source

photo/©: Heinz-Martin Schmidt


UCN source installed on beam tube C of the TRIGA reactor in Mainz

photo/©: Heinz-Martin Schmidt

In initial tests, this source has been delivering excellent results. Neutrons are the neutral particles that form part of the atomic nucleus. In unbound form, as so-called free neutrons, they are unstable and decay rapidly.

Experiments with ultra-cold neutrons are of special relevance for fundamental research in physics, particularly in the fields of cosmology and particle physics. For this purpose, free neutrons are cooled to very low temperatures, slowing down their movement to a level where they can be stored in special containers.

The first source of ultra-cold neutrons was established in Mainz in 2006 in a joint project with TUM. Based on the experience gained with this system, an optimized source was installed on beam tube D of the TRIGA reactor in Mainz within the context of the Cluster of Excellence "Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA). This source is also made available to external users and is utilized for such tasks as measuring the half-life of a free neutron. This source is mainly employed in pulse mode operation.

Last winter, scientists from Munich and Mainz installed a second neutron source on beam tube C. The components were built at TUM, then transported to Mainz, and installed within seven days. "We have learnt quite a lot in the last few years and have reconstructed the ion source on beam tube C to improve it," said Dr. Andreas Frei of the Research Neutron Source Heinz Maier-Leibnitz (FRM II) at TUM, who has been participating in the project since the early days in 2006.

The Munich scientists are using the results of the tests and experience gained with the system in Mainz to design a high-efficiency source to be installed at the FRM II in Garching operating at 20 megawatt reactor power. "We are testing individual components here and will use the data collected to develop materials for our future source facility," explained Professor Stephan Paul of TUM. The planned facility will be used to investigate fundamental aspects of the properties of the neutron.

"Our new UCN source is supplying outstanding results, and along with our colleagues from TUM we are very pleased that the installation was completed in such a short time," added Professor Tobias Reich of Johannes Gutenberg University Mainz. "We expect in future to obtain new insights into ways in which we can further upgrade such a source of ultra-cold neutrons." Access to the device on beam tube C will also be provided to other research teams in coming years. The source generates ultra-cold as well as cold neutrons, which can be used, for example, for structural investigations.

The cooperation agreement between JGU and the Research Neutron Source Heinz Maier-Leibnitz (FRM II) at TUM initially runs for three years but a further extension is planned. The project is being funded through the Priority Program "Precision Experiments in Particle and Astrophysics with Cold and Ultracold Neutrons" (SPP 1491) of the German Research Foundation (DFG).


Contact and further information:
Professor Dr. Tobias Reich
Institute of Nuclear Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-25250
e-mail: tobias.reich@uni-mainz.de
http://www.kernchemie.uni-mainz.de/eng/index.php

Professor Dr. Stephan Paul
Physics Department and Excellence Cluster Universe
Technical University of Munich
85748 Garching, GERMANY
e-mail: stephan.paul@tum.de
http://www.e18.ph.tum.de/en/home/

Related links:
http://www.uni-mainz.de/presse/14192_ENG_HTML.php – press release "Ultracold neutrons for science: UCNs will help to solve mysteries of astrophysics", 9 June 2011 ;
http://www.uni-mainz.de/presse/12971_ENG_HTML.php – press release "Physicists at Mainz University generate ultracold neutrons at the TRIGA reactor", 19 December 2008 ;
http://www.uni-mainz.de/presse/14343_ENG_HTML.php – press release "Successful generation of ultracold neutrons", 1 February 2006

Petra Giegerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-mainz.de/

Further reports about: JGU Johannes Gutenberg-Universität Mainz Neutron TRIGA TUM UCN neutrons ultracold neutrons

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>