Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transformation through Light


Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been observed via laser-induced electron diffraction by laser physicists from the Max Planck Institute of Quantum Optics (MPQ) and the Ludwig-Maximilians-Universität Munich (LMU) in collaboration with colleagues from the United States and Japan.

An infrared laser pulse hits a carbon macromolecule. This induces a structural transformation of the molecule and releases an electron into the environment.

Alexander Gelin

C₆₀ is an extremely well-studied carbon molecule, which consists of 60 carbon atoms and whose structure looks like a ball. The macromolecule is also known as buckminsterfullerene (or buckyball), a name given as a tribute to the architect Richard Buckminster Fuller, who has constructed buildings with similar shapes.

The laser physicists have now irradiated such buckyballs with infrared femtosecond laser pulses (one femtosecond is a millionth of a billionth of a second). Under the influence of the intense light the form of the macromolecules was changed from round to elongated.

The physicists were able to observe this phenomenon by using the following trick: at its maximum strength the infrared pulse triggered the release of an electron from the molecule.

Through the oscillations in the electromagnetic field of the light, the electron was first accelerated away from and then back toward the molecule (see figure) all within the timespan of a few femtoseconds.

Finally, the electron scattered off the molecule and left it completely. Images of these diffracted electrons carried an imprint of the deformed structure of the molecule.

Fullerenes, the discovery of which was honored with the Nobel Prize in chemistry in 1996, are stable, biocompatible, and exhibit remarkable physical, chemical, and electronic properties.

“The deeper understanding of the interaction of fullerenes with ultrashort, intense light can result in new applications in ultrafast, light-controlled electronics, which could be many order of magnitude faster than conventional electronics,” explains Matthias Kling, professor at the LMU Munich and head of the group in the Laboratory for Attoseconds (LAP) team.

Laser-induced electron diffraction (LIED), the structural imaging method, has so far only been demonstrated on smaller systems, and was used on a macromolecule for the first time. “The imaging of the deformation of the buckyball, which only lasts a few tens of femtoseconds, is an important advance in laser-induced electron diffraction. It paves the way toward recording molecular movies of complex (bio)molecules,” adds Kling.

As a result, the laser physicists are planning to record movies over a longer period to investigate the dynamics of fullerenes in more detail. (TN)

Wissenschaftliche Ansprechpartner:

Prof. Dr. Matthias Kling

Laboratory for Attosecond Physics
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching
Phone: +49 89 32905 234


Harald Fuest, Yu Hang Lai, Cosmin I. Blaga, Kazuma Suzuki, Junliang Xu, Philipp Rupp, Hui Li, Pawel Wnuk, Pierre Agostini, Kaoru Yamazaki, Manabu Kanno, Hirohiko Kono, Matthias F. Kling, and Louis F. DiMauro;
Diffractive Imaging of C60 Structural Deformations Induced by Intense Femtosecond Midinfrared Laser Fields
Phys. Rev. Lett. 122, 053002 – 6 February 2019
DOI: 10.1103/PhysRevLett.122.053002

Weitere Informationen:

Jessica Gruber | Max-Planck-Institut für Quantenoptik

More articles from Physics and Astronomy:

nachricht Famous “sandpile model” shown to move like a traveling sand dune
11.02.2019 | Institute of Science and Technology Austria

nachricht Research details sticky situations at the nanoscale
08.02.2019 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

Im Focus: Finally available in a bottle

Researchers succeed in gaining access to an important chemical compound

Since the discovery of the first homoleptic metal carbonyl complex Ni(CO)4 more than 130 years ago, scientists try to obtain further such compounds formed from...

Im Focus: Escort service: The role of immune cells in the formation of metastases

Tumor cells use a certain type of immune cells, the so-called neutrophils, to enhance their ability to form metastases. Scientists have deciphered the mechanisms of this collaboration and found strategies for blocking them. This is reported by researchers from the University of Basel and the University Hospital of Basel in the scientific journal "Nature".

A better understanding of the features that define the interplay between cancer cells and immune cells is key to identifying new cancer therapies. Yet, focus...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

Latest News

The physical forces of cells in action

12.02.2019 | Life Sciences

New diagnostic technique reveals a protein biomarker that accurately differentiates bladder cancer from benign inflammation

12.02.2019 | Health and Medicine

Fully equipped, automated laboratory advances for clinical stem cell therapies

12.02.2019 | Life Sciences

Science & Research
Overview of more VideoLinks >>>