Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TMT Will Take Discoveries of Stars Orbiting the Milky Way's Monster Black Hole to the Next Level

08.10.2012
Researchers have discovered a star that whips around the giant black hole at the center of our galaxy in record time, completing an orbit every 11.5 years.

The finding, appearing today in the journal Science, points ahead to groundbreaking experiments involving Einstein's general theory of relativity. Those tests will be fully enabled by the Thirty Meter Telescope (TMT), slated to begin observations next decade.

The record-setting star, called S0-102, was detected with the twin 10-meter telescopes at the W.M. Keck Observatory in Hawaii. For the past 17 years, the telescopes have imaged the galactic core, where a team of astronomers have hunted for stars with short orbital periods. These stars offer a never-before-possible test of how a supermassive black hole's gravity warps the fabric of space-time.

"The discovery of S0-102 is a crucial ingredient for our ultimate goal of revealing the fabric of space-time around a black hole for the first time," said Andrea Ghez, leader of the team and a professor of physics and astronomy at the University of California, Los Angeles and who is a member of the TMT project’s Science Advisory Committee

Although Keck is among the most advanced astronomical instruments now in operation, it will require the future power of TMT and its adaptive optics system to put Einstein's theory through its paces.

"In order to test the heart of relativity, Einstein's equations, we have to wait for the next major technological breakthrough: TMT with its multi-conjugate adaptive optics system," said Leo Meyer, a member of Ghez’ team and lead author of the new paper. Meyer, along with co-authors Sylvana Yelda and Tuan Do, is part of TMT’s astrometry working group that studies the unique capabilities of TMT to observe the motion of the faintest objects in the universe.

“It is amazing to think about what TMT will be capable of," said Ghez.

TMT's adaptive optics system builds on those presently employed by premier observatories including Keck, Gemini, and the Very Large Telescope. Adaptive optics helps ground-based telescopes collect sharper images by compensating for the distorting effects of atmospheric turbulence. The systems rely on deformable mirrors and lasers that create "guide stars" in the sky to provide reference points for keeping observations in focus.

The adaptive optics designed for TMT, along with its huge primary mirror, will provide breakthroughs on many fronts, Ghez explained. On TMT, the angular resolution – the ability to see fine details – will be three times sharper than that of Keck. But the gain in astrometric, or tracking precision of individual stars in a crowded region like the center of our Galaxy will be at least a factor of 10. It is also conceivable that TMT will find stars that are even more tightly bound to the Milky Way's central black hole than S0-102.

Like Keck, TMT will track the motion of stars, such as S0-102, that have elliptical (oval-shaped) orbits. The orbits bring the stars periodically closer to the black hole. This proximity, coupled with TMT's precision, will allow for two key tests of relativity.

In the first, a star deep in the gravity well of a black hole should have its light be stretched out, or redshifted, to a certain degree, and have its orbit deviate from a perfect ellipse. A second aspect of the deviation should reveal that the stars' orbits experience precession, or a slight shifting, creating a flower-shaped pattern of orbits around the black hole over time. The deviations will speak to the validity of the actual equations underpinning general relativity.

Researchers know that at the heart of a black hole, Einstein's general theory of relativity should begin to break down. Should some of the results gleaned by TMT not match with the venerated theory, a new window would open into how gravity fundamentally works at all scales of the universe, from the grandest to the smallest.

"As strong a theory as general relativity is for large-scale phenomena, we do not know how to reconcile it with quantum mechanics, the theory that describes phenomena on atomic and subatomic scales," said Ghez. "One reason, therefore, that we want to build TMT is to delve into the most fundamental workings of our universe."

TMT is the next-generation astronomical observatory that is scheduled to begin scientific operations in 2021 on Mauna Kea, Hawaii. TMT is a collaboration of the California Institute of Technology, University of California, Association of Canadian Universities for Research in Astronomy, the National Astronomical Observatory of Japan, a consortium of Chinese institutions led by the National Astronomical Observatories of the Chinese Academy of Sciences, and institutions in India supported by the Department of Science and Technology of India.

Gordon Squires | Newswise Science News
Further information:
http://www.tmt.org

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>