Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Bio-Robot Is a Germ Suited-Up with Graphene Quantum Dots

25.03.2015

As nanotechnology makes possible a world of machines too tiny to see, researchers are finding ways to combine living organisms with nonliving machinery to solve a variety of problems.

Like other first-generation bio-robots, the new nanobot engineered at the University of Illinois at Chicago is a far cry from Robocop. It's a robotic germ.


Credit: Berry Research Laboratory at UIC

Graphene quantum dots deposited on a sporating bacteria produces a graphene coated spore. Upon attachment of electrodes across the cell, a bio-electronic device is produced that is highly sensitive to humidity. Here, the spore reacts actively to humidity; and the reaction is translated to an electronic response from the interfaced graphene quantum dots.

UIC researchers created an electromechanical device—a humidity sensor—on a bacterial spore. They call it NERD, for Nano-Electro-Robotic Device. The report is online at Scientific Reports, a Nature open access journal.

“We’ve taken a spore from a bacteria, and put graphene quantum dots on its surface—and then attached two electrodes on either side of the spore,” said Vikas Berry, UIC associate professor of chemical engineering and principal investigator on the study.

“Then we change the humidity around the spore,” he said.

When the humidity drops, the spore shrinks as water is pushed out. As it shrinks, the quantum dots come closer together, increasing their conductivity, as measured by the electrodes.

“We get a very clean response—a very sharp change the moment we change humidity,” Berry said. The response was 10 times faster, he said, than a sensor made with the most advanced man-made water-absorbing polymers.

There was also better sensitivity in extreme low-pressure, low-humidity situations.
“We can go all the way down to a vacuum and see a response,” said Berry, which is important in applications where humidity must be kept low, for example, to prevent corrosion or food spoilage. "It’s also important in space applications, where any change in humidity could signal a leak,” he said.

Currently available sensors increase in sensitivity as humidity rises, Berry said. NERD's sensitivity is actually higher at low humidity.

“This is a fascinating device,” Berry said. “Here we have a biological entity. We’ve made the sensor on the surface of these spores, with the spore a very active complement to this device. The biological complement is actually working towards responding to stimuli and providing information.”

T. S. Sreeprasad and Phong Nguyen of UIC were lead co-authors on the study. Sreeprasad, a postdoctoral fellow, is now at Rice University in Houston. Ahmed Alshogeathri, Luke Hibbeler, Fabian Martinez and Nolan McNeiland, undergraduate students from Kansas State University, were also co-authors on the paper.

The study was supported by the Terry C. Johnson Center for Basic Cancer Research and partial support from the National Science Foundation (CMMI-1054877, CMMI-0939523 and CMMI-1030963) and the Office of Naval Research (N000141110767).

Contact Information
Jeanne Galatzer-Levy
Associate Director, News Bureau
jgala@uic.edu
Phone: 312-996-1583

Jeanne Galatzer-Levy | University of Illinois at Chicago
Further information:
http://www.uic.edu

More articles from Physics and Astronomy:

nachricht 4D imaging with liquid crystal microlenses
20.11.2019 | American Chemical Society

nachricht Outback telescope captures Milky Way center, discovers remnants of dead stars
20.11.2019 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>