Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing the shadow of a potentially habitable extrasolar planet

28.11.2016

Which paves the way to search for alien life

A group of researchers from the National Astronomical Observatory of Japan (NAOJ), the University of Tokyo, and the Astrobiology Center among others has observed the transit of a potentially Earth-like extrasolar planet known as K2-3d using the MuSCAT instrument on the Okayama Astrophysical Observatory 188-cm telescope. A transit is a phenomenon in which a planet passes in front of its parent star, blocking a small amount of light from the star, like a shadow of the planet. While transits have previously been observed for thousands of other extrasolar planets, K2-3d is important because there is a possibility that it might harbor extraterrestrial life.


This collage summarizes the research. Using the Okayama 188-cm Reflector Telescope and the observational instrument MuSCAT (See real photo on the bottom left.), researchers succeeded in observing the extrasolar planet K2-3d, which is about the same size and temperature as the Earth, pass in front of its host, the primary star blocking some of the light coming from the star (See artistic visualization at the top.), making it appear to dim (See real data on the bottom right.).

Credit: NAOJ

By observing its transit precisely using the next generation of telescopes, such as TMT, scientists expect to be able to search the atmosphere of the planet for molecules related to life, such as oxygen.

With only the previous space telescope observations, however, researchers can't calculate the orbital period of the planet precisely, which makes predicting the exact times of future transits more difficult. This research group has succeeded in measuring the orbital period of the planet with a high precision of about 18 seconds. This greatly improved the forecast accuracy for future transit times. So now researchers will know exactly when to watch for the transits using the next generation of telescopes. This research result is an important step towards the search for extraterrestrial life in the future.

K2-3d

K2-3d is an extrasolar planet about 150 light-years away that was discovered by the NASA K2 mission (the Kepler telescope's "second light") (Note 1). K2-3d's size is 1.5 times the size of the Earth. The planet orbits its host star, which is half the size of the Sun, with a period of about 45 days. Compared to the Earth, the planet orbits close to its host star (about 1/5 of the Earth-Sun distance). But, because the temperature of the host star is lower than that of the Sun, calculations show that this is the right distance for the planet to have a relatively warm climate like the Earth's. There is a possibility that liquid water could exist on the surface of the planet, raising the tantalizing possibility of extraterrestrial life.

K2-3d's orbit is aligned so that as seen from Earth, it transits (passes in front of) its host star. This causes, short, periodic decreases in the star's brightness, as the planet blocks some of the star's light. This alignment enables researchers to probe the atmospheric composition of these planets by precise measurement of the amount of blocked starlight at different wavelengths.

About 30 potentially habitable planets that also have transiting orbits were discovered by the NASA Kepler mission, but most of these planets orbit fainter, more distant stars. Because it is closer to Earth and its host star is brighter, K2-3d is a more interesting candidate for detailed follow-up studies (See Figure 2). The brightness decrease of the host star caused by the transit of K2-3d is small, only 0.07%. However, it is expected that the next generation of large telescopes (Note 2) will be able to measure how this brightness decrease varies with wavelength, enabling investigations of the composition of the planet's atmosphere. If extraterrestrial life exists on K2-3d, scientists hope to be able to detect molecules related to it, such as oxygen, in the atmosphere.

[MuSCAT Observations and Transit Ephemeris Improvements]

The orbital period of K2-3d is about 45 days. Since the K2 mission's survey period is only 80 days for each area of sky, researchers could only measure two transits in the K2 data. This isn't sufficient to measure the planet's orbital period precisely, so when researchers attempt to predict the times of future transits, creating something called a "transit ephemeris," there are uncertainties in the predicted times. These uncertainties grow larger as they try to predict farther into the future. Therefore, early additional transit observations and adjustments to the ephemeris were required before researchers lost track of the transit. Because of the importance of K2-3d, the Spitzer Space Telescope observed two transits soon after the planet's discovery, bringing the total to four transit measurements. However, the addition of even a single transit measurement farther in the future can help to yield a significantly improved ephemeris.

Using the Okayama 188-cm Reflector Telescope and the latest observational instrument MuSCAT, the team observed a transit of K2-3d for the first time with a ground based telescope. Though a 0.07% brightness decrease is near the limit of what can be observed with ground based telescopes, MuSCAT's ability to observe three wavelength bands simultaneously enhanced its ability to detect the transit. By reanalyzing the data from K2 and Spitzer in combination with this new observation, researchers have greatly improved the precision of the ephemeris, determining the orbital period of the planet to within about 18 seconds (1/30 of the original uncertainty). This improved transit ephemeris (Figure 3) ensures that when the next generation of large telescopes come online, they will know exactly when to watch for transits. Thus these research results help pave the way for future extraterrestrial life surveys.

Future Work

The NASA K2 mission will continue until at least February 2018, and is expected to discover more potentially habitable planets like K2-3d. Furthermore, K2's successor, the Transiting Exoplanet Survey Satellite (TESS), will be launched in December 2017. TESS will survey the whole sky for two years, and is expected to detect hundreds of small planets like K2-3d near our Solar System. To characterize a 'Second Earth' using the next generation of large telescopes, it will be important to measure the ephemerides and characteristics of planets with additional transit observations using medium sized ground-based telescopes. The team will continue using MuSCAT for research related to the future search for extraterrestrial life.

###

Notes:

1. The discovery of K2-3d was reported by a research team led by Ian Crossfield (University of California, Santa Cruz) in 2015.
2. The next generation of large telescopes includes the James Webb Space Telescope (JWST), which NASA will launch in 2018, and the Thirty Meter Telescope (TMT), which is being pursued through international collaboration including Japan.

Media Contact

Dr. Akihiko Fukui
afukui@oao.nao.ac.jp
81-902-065-3919

http://www.nins.jp/english/ 

Dr. Akihiko Fukui | EurekAlert!

Further reports about: Atmosphere Earth NASA Space Telescope Telescopes extrasolar planet planet orbits

More articles from Physics and Astronomy:

nachricht Observations of nearby supernova and associated jet cocoon provide new insights on gamma-ray bursts
18.01.2019 | George Washington University

nachricht A new twist on a mesmerizing story
17.01.2019 | ETH Zurich Department of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>