Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tilted pulses

04.09.2018

Physicists from Konstanz produced extremely short and specifically-shaped electron pulses for materials studies in the femtosecond and attosecond range in collaboration with Munich-based institutes

Our world is basically made up of atoms and electrons. They are very small and move around very rapidly in case of processes or reactions. Although seeing atoms is nowadays possible, for example with modern electron microscopes, tracking atomic movements requires ultrashort measurement periods in the femtosecond and attosecond range as well.


Electrons (green) reshape into tilted pulses by interference with a beam of laser-generated terahertz radiation (red)

Copyright: Baum

Such extremely fast “camera shutter speeds” can be reached through ultrashort electron pulses, which are shorter than the time scale of the motion. The shorter the pulse, the higher the resolution. Equally important for experiments, however, is a special shaping of the electron pulses in space and time, adjusted to the properties of the substance in question.

Konstanz physicist Professor Peter Baum and his team now succeeded in spatially and temporally directing and controlling ultrashort electron pulses directly by using the light cycles of laser light, instead of the previously applied microwaves. The result is not only a shortened pulse duration, but the researchers were also able to “tilt” the pulses, that is, have them run in another direction than vertically to the pulse front. These findings have been published in the current edition of the scientific journal Physical Review Letters.

Tilted electron pulses provide a huge potential for materials studies in which the fundamental changes last only femtoseconds or attoseconds – periods between 10-15 and 10-18 seconds. These times correspond to the period of atomic oscillations in crystals and molecules, or to the period of an individual light oscillation.

Tilted pulses are also highly relevant for free-electron lasers for producing more intense and shorter X-ray flashes for analyzing ultrafast processes. “Our results show that we can now shape and control electron pulses as eclectically as laser pulses, at the imaging resolution of modern electron microscopy”, summarizes Peter Baum.

According to quantum mechanics, the properties of particles at the smallest scale come in pairs, such as position and momentum in the uncertainty principle. And in the case of tilting? In laser optics it has been known for quite some time that the different colours must run into different directions. In their experiments the researchers from Konstanz and Munich now demonstrated that these old laws of laser optics equally apply to the matter wave of electrons, too, even though the electrons have a rest mass and are not coherent like laser light.

It is probable that these measured relations between pulse tilt and angular dispersion are generally valid for all wave phenomena in physics. In that sense the spatial and temporal shaping of electron pulses that the researchers have now achieved is not only of practical use for ultrafast materials research, but is also fundamentally interesting for physics in general.

Original Publication:
Dominik Ehberger, Andrey Ryabov, and Peter Baum. Tilted Electron Pulses. Phys. Rev. Lett. 121, 094801 (2018).
DOI: https://doi.org/10.1103/PhysRevLett.121.094801

Facts:
• Technology to shape electron pulses in space and time for materials studies in the femtosecond and attosecond range
• Collaboration between the University of Konstanz, the Ludwig Maximilian University Munich (LMU) and the Max Planck Institute of Quantum Optics
• The project was funded by the European Research Council and the LMU's Munich-Centre for Advanced Photonics
• More on the topic:
https://physics.aps.org/articles/v11/87

Note to editors:
You can download photos here:
https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2018/Bilder/Titled_Electron_...
https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2018/Bilder/Titled_Electron_...
Caption:
Electrons (green) reshape into tilted pulses by interference with a beam of laser-generated terahertz radiation (red)
Copyright: Baum

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2018/Bilder/Tilted_pulses_Pe...
Caption:
Prof Dr. Peter Baum
Copyright: Christian Hackenberger

Contact
University of Konstanz
Communications and Marketing
Phone: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

- uni.kn

Originalpublikation:

Dominik Ehberger, Andrey Ryabov, and Peter Baum. Tilted Electron Pulses. Phys. Rev. Lett. 121, 094801 (2018).
DOI: https://doi.org/10.1103/PhysRevLett.121.094801

Julia Wandt | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-konstanz.de

More articles from Physics and Astronomy:

nachricht Blue phosphorus -- mapped and measured for the first time
16.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht All in the family: Kin of gravitational wave source discovered
16.10.2018 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>