Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three-dimensional structure of skyrmions becomes visible for the first time

01.03.2019

An international team of scientists was able to make the indestructible magnetic structures visible for the first time with the aid of a high-resolution X-ray microscope.

Skyrmions are three-dimensional structures that occur in magnetic materials. They are magnetic vortices a few nanometers in size in which atomic elementary magnets are arranged in closed vortex structures.


Skyrmions are topologically protected, meaning that their shape cannot be changed. First described in the 1950s by the mathematician Tony Skyrme, their three-dimensional structure is less than one hundred nanometers in size. It was thus not possible to make the structure visible – until now.

An international team of researchers has successfully tackled the challenge. The scientists are from the Max Planck Institute for Intelligent Systems in Stuttgart, the Chinese Academy of Sciences in Beijing, the Songshan Lake Materials Laboratory in Guangdong, the University of Oxford in Great Britain, the University of Messina, and the Polytechnic in Bari, Italy.

Together, they were able to map the three-dimensional structure of Skyrmions for the first time. On February 8, 2019, the joint project entitled "Anatomy of Skyrmionic Textures in Magnetic Multilayers" was published in the scientific journal Advanced Materials.

"To date, no one has ever seen the three-dimensional structure of Skyrmions," says Professor Gisela Schütz, Director at the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart and head of the Modern Magnetic Systems Department.

"We are the first to get a high-resolution, three-dimensional image of this structure." Because a Skyrmion is smaller than 100 nanometers (~ 1000 times smaller than a human hair) the researchers use a method called ptychography for scanning transmission X-ray microscopy.

"We achieve the best resolution for X-rays and are even highly sensitive to magnetic details. This was the only way to investigate the interior of magnetic Skyrmions," explains Schütz.

The researchers used MAXYMUS, a high-resolution X-ray microscope located at BESSY II, an 80-meter-wide synchrotron radiation source at the Helmholtz-Center Berlin that produces extremely bright X-ray light.

This was followed at the RASOR station at BESSY's British counterpart, Diamond in Oxfordshire. The research team discovered that the three-dimensional structure of the Skyrmion is more complicated than expected.

"We found out that an interplay of four magnetic interactions lead to the formation of the 3D structure. But the simple dipole coupling is mostly dominant in contradiction to prior expectations," Dr. Joachim Gräfe explains, who leads the Nanomagnonics and Magnetization Dynamics Research Group at the MPI-IS. "The decoding of the real deometry is a prerequisite for the understanding and, therefore, the manipulation of the world-wide investigated Skyrmions”.

Understanding magnetic Skyrmions and their effects is particularly important for the development and future manufacture of spintronic storage devices. These magnetic spin-based electronics, which store information in Skyrmions, are considered less susceptible to interference and very stable because Skyrmion structures are topologically protected.

"To use Skyrmions as data storage devices, you have to know the structure and all the effects," says Gräfe. "With our publication, we have taken basic research in this field one step further."

About us

Professor Gisela Schütz is a Director at the Max Planck Institute for Intelligent Systems in Stuttgart, where she heads the "Modern Magnetic Systems" department. Her research interests include the application of synchrotron radiation in X-ray spectroscopy and microscopy, as well as the development of advanced spintronic/magnon systems and new supermagnets.

Schütz was born in Ottobeuren in 1955. She studied physics at the Technical University of Munich (TUM), where she received her doctorate in 1984 from the Chair of Nuclear Physics. It was also at the TUM that she started her research activities in the field of condensed matter with synchrotron radiation.

She worked in several synchrotron laboratories and developed new methods for the investigation of magnetic structures and phenomena with polarized X-rays. After completing her studies in experimental physics in 1992, she became professor at the University of Augsburg in 1993 and was appointed professor at the Institute of Experimental Physics at the University of Würzburg in 1997. In 2001, Schütz became Director at the Max Planck Institute for Metals Research, now the Max Planck Institute for Intelligent Systems.

Dr. Joachim Gräfe heads the "Nanomagnonics and Magnetisation Dynamics" research group at the Max Planck Institute for Intelligent Systems in Stuttgart. The group is assigned to the Modern Magnetic Systems department of Prof. Gisela Schütz. Gräfe’s research concentrates on magnetization dynamics on the nanoscale, in particular magnonics, through the use of state-of-the-art X-ray microscopy.

Gräfe was awarded the renowned Ernst Eckhard Koch Prize and the Otto Hahn Medal of the Max Planck Society. He studied at the University of Leipzig and Cardiff University in the UK. In 2016, he received his Ph.D. at the MPI-IS, where he has been working as a group leader ever since.

Weitere Informationen:

https://is.mpg.de/en/news/three-dimensional-structure-of-skyrmions-becomes-visib...

Linda Behringer | Max-Planck-Institut für Intelligente Systeme

More articles from Physics and Astronomy:

nachricht Non-volatile control of magnetic anisotropy through change of electric polarization
12.11.2019 | Kanazawa University

nachricht Thorium superconductivity: Scientists discover new high-temperature superconductor
11.11.2019 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

How the Zika virus can spread

11.11.2019 | Life Sciences

Researchers find new potential approach to type 2 diabetes treatment

11.11.2019 | Health and Medicine

Medica 2019: Arteriosclerosis - new technologies help to find proper catheters and location of vasoconstriction

11.11.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>