Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three-detector observation of gravitational waves

28.09.2017

The cosmic ripples were not only observed by the two Ligo observatories in the USA, but also the Italian detector Virgo

The observation of gravitational waves is gradually becoming routine. Once again, researchers have recorded the ripples of space-time predicted by Albert Einstein a hundred years ago. But this time, next to the two US Advanced Ligo observatories, which detected all three gravitational waves recorded so far, the Italian Advanced Virgo detector was also involved. On August 14, at 12:30:43 pm CEST, all three detectors observed a gravitational wave signal, known as GW170814, generated by two coalescing black holes.


Signal from space: Two black holes with 31 and 25 solar masses merge, thereby emitting gravitational waves. The colours characterize the strength of the field.

© Numerical-relativistic simulation: S. Ossokine, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes Project; Scientific Visualization: T. Dietrich (Max Planck Institute for Gravitational Physics), R. Haas (NCSA)


Triple evidence: The signal on August 14 was measured by the two Ligo observatories in Hanford and Livingston and the Virgo detector almost at the same time.

© The LIGO Scientific Collaboration and the Virgo Collaboration

Researchers at the Max Planck Institute for Gravitational Physics at the Hanover and Potsdam sites were delighted with the results. “Gravitational wave astronomy is rapidly advancing. With a third large detector, we can even more accurately determine the position and distance of the gravitational wave sources“, says Alessandra Buonanno, and her two co-directors Bruce Allen and Karsten Danzmann. “We can thus search more efficiently for electromagnetic and astroparticle counterparts of the sources and together advance into the new era of multi-messenger astronomy”.

In the case of GW170814, a total of 25 astronomical observatories searched for electromagnetic radiation in the gamma, optical, infrared, x-ray, and radio wavelength ranges, as well as for neutrino emissions. None of the instruments observed any signal but this is expected for stellar-mass black holes.

The two cosmic monsters had about 31 and 25 solar masses. The resulting black hole has 53 solar masses - three solar masses were translated into gravitational waves. The signal arrived at the LIGO Livingston detector about 8 milliseconds before the LIGO Hanford detector and about 14 milliseconds before the Virgo detector in Tuscany. From this combination of arrival time delays, the direction towards the source can be determined.

The researchers succeeded in localizing GW170814 to a patch of 60 square degrees in the southern celestial hemisphere between the constellations Eridanus and Horologium. By comparing the measured waveform with predictions from the General Relativity Theory, scientists could estimate the distance to the black holes of about 1.8 billion light years.

Researchers from the Max Planck Institute from the Gravitational Physics in Hannover and Potsdam were also involved in the detection and analysis of the event. For example, Karsten Danzmann has been operating the GEO600 Collaboration, a team of Max Planck, Leibniz Universität Hannover and UK researchers, since the mid 1990s. GEO600 is a development center for novel and advanced technologies in the international gravitational-wave research community.

Max Planck researchers together with the Laser Zentrum Hannover e.V. developed, built, and installed the high-power laser systems at the heart of the LIGO instruments. Crucial improvements in the optical measurement principle such as power and signal recycling were first demonstrated at high sensitivity in GEO600.

Members of the “Observational Relativity and Cosmology” division at the Max Planck Institute in Hannover analyzed Virgo data to estimate the probability that the weak Virgo signal is caused by random noise fluctuations. They found the signal to be real with a probability of more than 99%. They also developed methods to clean the LIGO data from instrumental artifacts, and thereby significantly increased the LIGO sensitivity.

In addition, members of the Observational Relativity and Cosmology division developed and implemented many of the algorithms and software used in the analysis of the LIGO data. These analyses were used, for example, to establish the statistical significance of GW170814 and to determine its parameters. In addition, about 40% of the ongoing LIGO data analysis of data from the second science run “O2” was performed on the Atlas supercomputer operated by the division.

As with previous ground-breaking gravitational-wave observations the role of the Astrophysical and Cosmological Relativity division of the Max Planck Institute in Potsdam was crucial in observing and interpreting GW170814 – for example, in developing and using the most accurate waveform models to both search for and characterize the source of GW170814.

Models also included new physical effects, such as eccentricity and tides for neutron stars. The goal is to shed light on binary’s formation scenarios and matter at extreme conditions with future observations. Members of the division at the AEI in Potsdam have continued to improve waveform models including new physical effects, such as eccentricity and tides for neutron stars, to shed light on binary’s formation scenarios and matter at extreme conditions with future observations.

Contact:

Prof. Dr. Bruce Allen
Max Planck Institute for Gravitational Physics (Hannover), Hannover
Phone: +49 511 762-17148
Email: bruce.allen@aei.mpg.de

Prof. Dr. Alessandra Buonanno
Max Planck Institute for Gravitational Physics, Potsdam-Golm
Phone: +49 331 567-7220

Fax: +49 331 567-7298
Email: alessandra.buonanno@aei.mpg.de


Prof. Dr. Karsten Danzmann
Max Planck Institute for Gravitational Physics (Hannover), Hannover
Phone: +49 511 762-2356

Fax: +49 511 762-5861
Email: karsten.danzmann@aei.mpg.de


Dr. Benjamin Knispel
Press & public outreach officer

Max Planck Institute for Gravitational Physics (Hannover), Hannover
Phone: +49 511 762-19104
Email: benjamin.knispel@aei.mpg.de


Dr. Elke Müller
Press & public outreach officer

Max Planck Institute for Gravitational Physics, Potsdam-Golm
Phone: +49 331 567-7303

Fax: +49 331 567-7298

Prof. Dr. Bruce Allen | Max Planck Institute for Gravitational Physics
Further information:
https://www.mpg.de/11492342/three-detector-observation-of-gravitational-waves

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes

17.07.2018 | Life Sciences

Electronic stickers to streamline large-scale 'internet of things'

17.07.2018 | Information Technology

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>