Thousands of tons from the atmosphere lost into space annually

PhD student Erik Engwall of Uppsala University and the Swedish Institute of Space Physics led the study, which uses data from the European Cluster satellites and has just been published in Nature Geoscience.

The new observations show that the polar wind, a very dilute wind of hydrogen and oxygen, flows unimpeded to very high altitudes. The outflow has previously only been possible to study from satellites at low altitudes, so it was not clear if it actually continued far into space or if it spread out and soon returned to Earth. It is now clear that the particles are actually lost from Earth, as the Cluster measurements have followed them flow to an altitude of almost ten times the diameter of the Earth.

“The polar wind is no threat to the atmosphere”, says study leader Erik Engwall, pointing out that an outflow of the magnitude observed will not make any dramatic change to our atmosphere even during the full expected lifetime of the solar system. But similar phenomena may be more important for other celestial bodies. “To understand how our atmosphere evolves is also important for understanding other atmospheres that can harbour life”, adds Erik Engwall.

The discovery was made when the scientists tried to understand why the Cluster instrument provided by the Uppsala team seemed to give unrealistic results in space above the Earth's polar regions. “In regions of space where we expected to find very weak electric fields, we were surprised to find very strong fields in a direction that was just plain impossible”, says Anders Eriksson, a scientist operating the Electric Fields and Waves instrument. By computer simulation, Erik Engwall could show that the unexpected results were due to the spacecraft encountering a supersonic wind of charged particles flowing away into space from the Earth's polar regions. The team could thus transform the apparent “measurement error” into a new method of observing the polar wind at unprecedented distances from the Earth. “In this region, the outflow was completely invisible to satellites until revealed by our new method”, says Erik Engwall.

The paper “Earth's ionospheric outflow dominated by hidden cold plasma” by Erik Engwall, Anders Eriksson, Chris Cully, Mats André, Roy Torbert and Hans Vaith will appear in the January 2009 issue of Nature Geoscience, and was published online on 14 December. The results will also be presented at the fall meeting of the American Geophysical Union in San Francisco on Wednesday 17 December.

Cluster is a cornerstone project of the European Space Agency (ESA) and consists of four satellites, which have flown, in formation around the Earth since the summer of 2000. The Swedish Institute of Space Physics and the University of New Hampshire are responsible for two instruments measuring electric fields by very different methods on each of the satellites, and it was by comparing the two sets of results that the discovery was made. The Swedish group is financed by the Swedish National Space Board and the American group by NASA.

* Erik Engwall, PhD student, Department of Physics and Astronomy, Uppsala University, erik.engwall@irfu.se, +46-70-765 9566.

* Anders Eriksson, scientist, Swedish Institute of Space Physics, anders.eriksson@irfu.se, +46-18-471 5945, +46-70-171 3029.

* Mats André, professor, Swedish Institute of Space Physics, mats.andre@irfu.se, +46-70-779 2072 (available at the AGU meeting in San Francisco).

Weitere Informationen:
http://www.irf.se/
http://space.irfu.se/
http://www-ssg.sr.unh.edu/
http://www.uu.se/
http://dx.doi.org/10.1038/NGEO387
http://cluster.esa.int/

Media Contact

Rick McGregor idw

More Information:

http://www.vr.se

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors