Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thin, active invisibility cloak demonstrated for first time

13.11.2013
Invisibility cloaking is no longer the stuff of science fiction: two researchers in The Edward S. Rogers Sr. Department of Electrical & Computer Engineering have demonstrated an effective invisibility cloak that is thin, scalable and adaptive to different types and sizes of objects.

Professor George Eleftheriades and PhD student Michael Selvanayagam have designed and tested a new approach to cloaking—by surrounding an object with small antennas that collectively radiate an electromagnetic field.

The radiated field cancels out any waves scattering off the cloaked object. Their paper ‘Experimental demonstration of active electromagnetic cloaking’ appears today in the journal Physical Review X.

“We’ve taken an electrical engineering approach, but that’s what we are excited about,” says Eleftheriades. “It’s very practical.”

Picture a mailbox sitting on the street. When light hits the mailbox and bounces back into your eyes, you see the mailbox. When radio waves hit the mailbox and bounce back to your radar detector, you detect the mailbox. Eleftheriades and Selvanyagam’s system wraps the mailbox in a layer of tiny antennas that radiate a field away from the box, cancelling out any waves that would bounce back. In this way, the mailbox becomes undetectable to radar.

“We’ve demonstrated a different way of doing it,” says Eleftheriades. “It’s very simple: instead of surrounding what you’re trying to cloak with a thick metamaterial shell, we surround it with one layer of tiny antennas, and this layer radiates back a field that cancels the reflections from the object.”

Their experimental demonstration effectively cloaked a metal cylinder from radio waves using one layer of loop antennas. The system can be scaled up to cloak larger objects using more loops, and Eleftheriades says the loops could become printed and flat, like a blanket or skin. Currently the antenna loops must be manually attuned to the electromagnetic frequency they need to cancel, but in future they could function both as sensors and active antennas, adjusting to different waves in real time, much like the technology behind noise-cancelling headphones.

Work on developing a functional invisibility cloak began around 2006, but early systems were necessarily large and clunky—if you wanted to cloak a car, for example, in practice you would have to completely envelop the vehicle in many layers of metamaterials in order to effectively “shield” it from electromagnetic radiation. The sheer size and inflexibility of the approach makes it impractical for real-world uses. Earlier attempts to make thin cloaks were not adaptive and active, and could work only for specific small objects.

Beyond obvious applications, such as hiding military vehicles or conducting surveillance operations, this cloaking technology could eliminate obstacles—for example, structures interrupting signals from cellular base stations could be cloaked to allow signals to pass by freely. The system can also alter the signature of a cloaked object, making it appear bigger, smaller, or even shifting it in space. And though their tests showed the cloaking system works with radio waves, re-tuning it to work with Terahertz (T-rays) or light waves could use the same principle as the necessary antenna technology matures.

“There are more applications for radio than for light,” says Eleftheriades. “It’s just a matter of technology—you can use the same principle for light, and the corresponding antenna technology is a very hot area of research.”

For more information, contact:

Marit Mitchell
Senior Communications Officer
The Edward S. Rogers Sr. Department of Electrical & Computer Engineering
Tel: 416-978-7997
marit.mitchell@utoronto.ca

Marit Mitchell | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>