Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thermal Radiation from Tiny Particles

22.06.2018

Researchers from Greifswald and Heidelberg have succeeded in performing time-resolved measurements of the internal energy distribution of stored clusters. The clusters investigated consisted of four cobalt atoms and an additional electron. Christian Breitenfeldt, a physicist at the University of Greifswald, presents, with his colleagues from the Max Planck Institute for Nuclear Physics in Heidelberg, the direct observation of the radiative heat exchange of these nanoparticles with their environment in the journal Physical Review Letters.

You do not have to touch a hot stove to feel its heat. If it is hot enough, you can see it glow. But, even at lower temperature it still emits light – although not visible to the human eye, but in the form of infrared rays.


Schematic of delayed electron emission after photoexcitation of a negatively charged four-atom cobalt cluster.

Drawing: Lutz Schweikhard

We have known the radiation laws for the objects of daily life as well as for celestial bodies like our sun since the studies of Max Planck, for which he received the Nobel Prize for physics of 1918. Isolated atoms also emit electromagnetic waves, according to very different, but also well-known laws. However, the details of radiative cooling of clusters – nanoparticles made of just a few atoms or molecules – have still not been clarified completely.

This topic is being approached by researchers at the Max Planck Institute for Nuclear Physics in Heidelberg, (MPIK) in collaboration with the University of Greifswald. As part of his doctoral work, Christian Breitenfeldt, a member of the research group led by Prof. Lutz Schweikhard in Greifswald, used the electrostatic ion-beam trap CTF (Cryogenic Trap for Fast Ion Beams) at MPIK’s scientific division led by Prof. Klaus Blaum, under the supervision of Prof. Andreas Wolf and Dr. Sebastian George.

The studies were performed with nanoparticles made of four cobalt atoms. These cobalt clusters were produced as negatively charged ions, i.e. with an additional electron, and captured in the CTF. Essentially, the trap consists of a pair of ion optical mirrors between which the stored ions bounce in an ultrahigh vacuum – which is very similar to a device that was developed in Greifswald and used extensively for precision mass measurements of exotic atomic nuclei at CERN.

If a nanoparticle has some thermal energy, i.e. ‘internal energy’ stored in the vibration of its atoms, the energy can be transferred to the electron. This can lead to the emission of the electron – sooner or later, depending on the amount of internal energy. As the cluster is no longer electrically charged, it is also stored no longer. After leaving the trap, it can be traced by a detector.

The aim of the experiments was to monitor the electron detachment in a time-resolved manner and to reconstruct the temporal development of the thermal distribution of the clusters’ internal energy. To this end, the clusters were irradiated with laser light of various wavelengths, i.e. at different photon energies. The electron emission, as a function of laser wavelength, served as a probe for the energy distribution of the stored cobalt clusters.

The internal energy distribution was probed 20 times per second over periods of six seconds, i.e. each series consisted of 120 measurements. This allowed the researchers to monitor the temporal development of the clusters’ thermal energy. It led to the reconstruction of the energy exchange by thermal radiation between the clusters and their environment, in this case the vacuum vessel, which was at room temperature.

If the clusters had a high level of internal energy at the beginning of the storage time, cooling was observed. In contrast, when the clusters came from a particularly cold cluster ion source, which was contributed to these measurements by a research group from the University of Kaiserslautern, the clusters were observed to warm up over time. In both cases, the clusters tried to gain an equilibrium in the flow of thermal radiation, i.e. to reach the environmental temperature of the experimental setup.

Both cooling and heating by thermal radiation are important aspects with respect to the stability of nanoparticles in free space. Under space conditions – in the ‘interstellar’ medium between the stars – the environmental temperature can be very low.

Thus, having gained these first results, follow-up experiments are currently being performed where these processes are being investigated at much lower temperatures, just a few degrees above absolute zero. To achieve this, the cryogenic storage ring CSR is being applied, which started work recently at the Max-Planck-Institute of Nuclear Physics.

The experiments currently being performed – again using negative four-atomic cobalt clusters – have already shown that the energy exchange via thermal radiation slows down significantly at very low temperatures. The long storage duration of ions in the CSR (up to hours) are proving to be of particular advantage for the investigation of molecules and clusters under interstellar conditions.

The results on the radiative cooling and heating of small cobalt clusters were published in the journal Physical Review Letters 120, 253001 – Published 21 June 2018
Long-term monitoring of the internal energy distribution of isolated cluster systems
C. Breitenfeldt, K. Blaum, S. George, J. Göck, G. Guzmán-Ramírez, J. Karthein, T. Kolling, M. Lange, S. Menk, C. Meyer, J. Mohrbach, G. Niedner-Schatteburg, D. Schwalm, L. Schweikhard, A. Wolf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.253001
DOI: https://doi.org/10.1103/PhysRevLett.120.253001
Extended press release in German: https://physik.uni-greifswald.de/ag-schweikhard/further-links/press-releases/

Contacts
Dr. Sebastian George
Institute of Physics, University of Greifswald
Research Group ‘Atomic and Molecular Physics’
Felix-Hausdorff-Straße 6, 17489 Greifswald
Tel.: +49 3834 420 4700
sebastian.george@uni-greifswald.de
https://physik.uni-greifswald.de/ag-schweikhard/group-members/george/

Prof. Dr. Lutz Schweikhard
Institute of Physics, University of Greifswald
Research Group ‘Atomic and Molecular Physics’
Felix-Hausdorff-Straße 6, 17489 Greifswald
Tel.: +49 3834 420 4700
lschweik@physik.uni-greifswald.de
https://physik.uni-greifswald.de/ag-schweikhard/
http://www.researchgate.net/profile/Lutz_Schweikhard

Prof. Dr. Andreas Wolf
Max-Planck-Institute for Nuclear Physics
Department ‘Stored and Cooled Ions’
Saupfercheckweg 1, 69117 Heidelberg
Tel.: +49 6221 516 851
andreas.wolf@mpi-hd.mpg.de
https://www.mpi-hd.mpg.de/blaum/members/molecular-qd/wolf.de.html

Prof. Dr. Gereon Niedner-Schatteburg
Institute of Physical and Theoretical Chemistry,
University of Kaiserslautern
Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern
Tel.: +49 631 205 2536
gns@chemie.uni-kl.de
https://www.chemie.uni-kl.de/gns/

Jan Meßerschmidt | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Halfway mark for NOEMA, the super-telescope under construction
20.09.2018 | Max-Planck-Institut für Radioastronomie

nachricht What even Einstein didn't know
20.09.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Glacial engineering could limit sea-level rise, if we get our emissions under control

20.09.2018 | Earth Sciences

Warning against hubris in CO2 removal

20.09.2018 | Earth Sciences

Halfway mark for NOEMA, the super-telescope under construction

20.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>