Thermal conductivity of argon at high pressures and temperatures

Under these conditions, however, it is difficult to measure how materials conduct heat.

To better understand thermal conductivity, researchers from the United States and Sweden placed a thin film of iridium sandwiched between layers of argon in a DAC, subjected it to extreme pressure (50 gigapascals) and then used microsecond laser bursts to heat it to 2,500 degrees K.

The researchers measured the temperature history of the iridium foil and used that data to calculate the thermal conductivity of the argon.

Their results confirmed that one model, kinetic theory, better matched observations than another model, Green-Kubo formalism. These results are important for ongoing studies of how minerals behave in the Earth's mantle and core.

TITLE: “Thermal conductivity of argon at high pressures and high temperatures”
JOURNAL: Journal of Applied Physics
AUTHORS: Alexander F. Goncharov (1), Michael Wong (1,2), D. Allen Dalton (1), J.G.O. Ojwang (1), Viktor V. Struzhkin (1), Zuzana Konopkova (3), Peter Lazor (3)
(1) Carnegie Institution of Washington, Washington, D.C.
(2) University of California, Berkeley
(3) Uppsala University, Upsala, Sweden

Media Contact

Charles E. Blue EurekAlert!

More Information:

http://www.aip.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors