Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The taming of the light screw

22.03.2019

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a billionth of a second) and is widely used in many different areas of science nowadays, ranging from physics to chemistry to biology.


An intense laser field (red) interacts with a crystalline solid (white). Higher-order harmonic fields (blue and magenta) are emitted whose polarization states (linear, elliptic or circular) are d

Jörg Harms / MPSD

This strong-field phenomenon converts many low-energy photons from an intense laser pulse into a photon of much higher energy. Whereas the HHG process is well understood in atomic and molecular gases, the mechanism underlying frequency conversion in solid materials is currently still the subject of scientific controversy.

By combining HHG experiments and state-of-the-art theoretical simulations, scientists from the Deutsches Elektronen-Synchrotron (DESY) and the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg now introduce polarization-state-resolved high-harmonic spectroscopy of solids, that permits deeper insights into both electronic and structural dynamics occurring on time scales shorter than one oscillation of the light field. Their work is now published in Nature Communications.

The emitted harmonic fields can oscillate in a linear fashion, or they can rotate elliptically or circularly with clockwise or anticlockwise handedness (so-called helicity) – just like a screw of light. The scientists now reveal how the harmonics’ polarization states and their handedness encode valuable information on the crystal structure and ultrafast strong-field dynamics, and how the harmonics’ polarization states can be controlled.

Moreover, since the harmonics are created within a single period of the incident driving field, the method inherently comes with a sub-optical-cycle temporal resolution.

The present work investigates the prototype materials silicon and quartz to establish the new spectroscopic technique. Yet the method is versatile and expected to find important applications in future studies of novel quantum materials such as strongly correlated materials, topological insulators, and magnetic materials.

Wissenschaftliche Ansprechpartner:

Oliver Mücke, senior scientist +49 (0)40 8998 6355

Originalpublikation:

Polarization-state-resolved high-harmonic spectroscopy of solids, Nature Communications

Weitere Informationen:

https://www.nature.com/articles/s41467-019-09328-1

Jenny Witt | Max-Planck-Institut für Struktur und Dynamik der Materie
Further information:
http://www.mpsd.mpg.de

More articles from Physics and Astronomy:

nachricht New algorithm optimizes quantum computing problem-solving
11.04.2019 | Tohoku University

nachricht International astronomers reveal first image of event horizon of super-massive black hole
11.04.2019 | University of Massachusetts at Amherst

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

Im Focus: Newly discovered mechanism of plant hormone auxin acts the opposite way

Auxin accumulation at the inner bend of seedling leads to growth inhibition rather than stimulation as in other plant tissues.

Increased levels of the hormone auxin usually promote cell growth in various plant tissues. Chinese scientists together with researchers from the Institute of...

Im Focus: Creating blood vessels on demand

Researchers discover new cell population that can help in regenerative processes

When organs or tissues are damaged, new blood vessels must form as they play a vital role in bringing nutrients and eliminating waste. This is the only way for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

European Geosciences Union meeting: ExoMars press conference, live streams, on-site registration

02.04.2019 | Event News

Networks make it easier

02.04.2019 | Event News

 
Latest News

The interface makes the difference

12.04.2019 | Power and Electrical Engineering

Power Electronics: Ceramic Embedding Gives a Boost to Wide Bandgap Semiconductor Devices

12.04.2019 | Trade Fair News

SLAC develops novel compact antenna for communicating where radios fail

12.04.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>