Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The synchronized dance of skyrmion spins

31.05.2017

Computer simulations reveal new insights into skyrmion particles, which are promising for next-generation information storage and processing devices

In recent years, excitement has swirled around a type of quasi-particle called a skyrmion that arises as a collective behavior of a group of electrons. Because they're stable, only a few nanometers in size, and need just small electric currents to transport them, skyrmions hold potential as the basis for ultra-compact and energy-efficient information storage and processing devices in the future.


The configuration of spins in a Néel skyrmion.

Credit: Zhang et al.

Now, a research group in Singapore has used computer simulations to further probe the behaviors of skyrmions, gaining insight that can help scientists and engineers better study the quasi-particles in experiments. The new results, published this week in AIP Advances, from AIP Publishing, could also lead to skyrmion-based devices such as microwave nano-oscillators, used in a range of applications including wireless communication, imaging systems, radar and GPS.

"Its unique attributes, for instance, could theoretically enable notebooks with hard drives the size of peanuts, and yet consume little energy," said Meng Hau Kuok of the National University of Singapore and one of the work's authors.

... more about:
»AIP »Electrons »magnetic field »physics »skyrmions

Observed in 2009, skyrmions arise from the collective behavior of electrons in magnetic materials under certain conditions. Due to their spins, the electrons act as tiny magnets where their magnetic poles align with their spins. A phenomenon called the Dzyaloshinskii-Moriya interaction (DMI) -- which occurs at the interface between a magnetic layer and a non-magnetic metal -- tilts the spins and arranges them into circular patterns. These circular arrangements of spins, which behave collectively like particles, are skyrmions.

Although researchers have studied how groups of skyrmions behave, little is known about their internal behaviors, Kuok said. In particular, physicists don't fully understand the particles' three fundamental modes, which are analogous to the fundamental vibrational modes of a guitar string corresponding to different musical notes. Like those notes, each skyrmion mode is associated with a certain frequency.

"The modes can be thought of as circular patterns of spins dancing in sync," Kuok said. Understanding the modes is essential for knowing how the particles would behave.

In one of the modes, called the breathing mode, the pattern of spins alternately expands and contracts. In the two other modes, the circular arrangement of spins rotates in the clockwise and counterclockwise directions, respectively.

The researchers focused on a type of skyrmion called the Néel skyrmion, which exists in ultrathin films deposited on metals with a strong DMI. Using a computer, they simulated how the DMI and external magnetic fields of varying strengths affected the modes and properties of the particles. They found that given the same DMI strength, and if in the crystal phase, the frequencies corresponding to each mode depend differently on magnetic field strength.

Increasing the magnetic field also induces the skyrmions to change phase relative to one another, from being arranged in ordered arrays like a crystal to randomly distributed and isolated. The researchers found that the three modes respond differently to this phase transition.

Surprisingly, Kuok said, all three modes can exist in the crystal phase, while the clockwise rotational mode does not exist in the isolated phase. One reason, the simulations revealed, might be that the skyrmions are farther apart in the isolated phase than in the crystal phase. If the skyrmions are too far apart, then they can't interact. This interaction might be necessary for the clockwise rotational mode, Kuok said.

Because the mode frequencies of skyrmions are in the microwave range, the quasi-particles could be used for new microwave nano-oscillators, which are important building blocks for microwave integrated circuits.

A microwave nano-oscillator based on skyrmions could operate at three resonant frequencies, corresponding to the three modes. An increasing magnetic field would lower the resonant frequencies of the breathing and clockwise rotating modes at different rates, but increase the resonant frequency of the counterclockwise rotating mode. Such a skyrmion-based device would be more compact, stable, and require less energy than conventional, electron-based nano-oscillators.

But before skyrmions find their way into devices, researchers still need to engineer their specific desired properties, such as size, and precisely tune their dynamic properties. "Our findings could provide theoretical insights into addressing these challenges," Kuok said.

###

The article, "Eigenmodes of Néel skyrmions in ultrathin magnetic films," is authored by Vanessa L. Zhang, Chen Guang Hou, Kai Di, Hock Siah Lim, Ser Choon Ng, Shawn Pollard, Hyunsoo Yang and Meng Hau Kuok. The article appeared in AIP Advances on May 30, 2017 [DOI: 10.1063/1.4983805] and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4983806.

ABOUT THE JOURNAL

AIP Advances is an open access journal publishing in all areas of physical sciences--applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.

Media Contact

Julia Majors
media@aip.org
30-120-903-090

 @jasonbardi

http://www.aip.org 

Julia Majors | EurekAlert!

Further reports about: AIP Electrons magnetic field physics skyrmions

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

NASA keeps watch over space explosions

16.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>