The surprising environment of an enigmatic neutron star

This is an infrared image of a neutron star (source on right in box) with an extended infrared emission obtained from observations with the Hubble Space Telescope. The blue circle indicates the pulsar's X-ray position (obtained with the Chandra X-ray Space Telescope), the cross marks the position of the pulsar in the UV-Optical (measured with the Hubble Space Telescope). Credit: Bettina Posselt, Penn State

“This particular neutron star belongs to a group of seven nearby X-ray pulsars–nicknamed 'the Magnificent Seven'–that are hotter than they ought to be considering their ages and available energy reservoir provided by the loss of rotation energy,” said Bettina Posselt, associate research professor of astronomy and astrophysics at Penn State and the lead author of the paper.

“We observed an extended area of infrared emissions around this neutron star–named RX J0806.4-4123– the total size of which translates into about 200 astronomical units (or 2.5 times the orbit of Pluto around the Sun) at the assumed distance of the pulsar.”

This is the first neutron star in which an extended emission has been seen only in the infrared. The researchers suggest two possibilities that could explain the extended infrared emission seen by the Hubble Space Telescope. The first is that there is a disk of material–possibly mostly dust–surrounding the pulsar.

“One theory is that there could be what is known as a 'fallback disk' of material that coalesced around the neutron star after the supernova,” said Posselt. “Such a disk would be composed of matter from the progenitor massive star. Its subsequent interaction with the neutron star could have heated the pulsar and slowed its rotation. If confirmed as a supernova fallback disk, this result could change our general understanding of neutron star evolution.”

The second possible explanation for the extended infrared emission from this neutron star is a “pulsar wind nebula.”

“A pulsar wind nebula would require that the neutron star exhibits a pulsar wind,” said Posselt. “A pulsar wind can be produced when particles are accelerated in the electric field that is produced by the fast rotation of a neutron star with a strong magnetic field.

As the neutron star travels through the interstellar medium at greater than the speed of sound, a shock can form where the interstellar medium and the pulsar wind interact. The shocked particles would then radiate synchrotron emission, causing the extended infrared emission that we see. Typically, pulsar wind nebulae are seen in X-rays and an infrared-only pulsar wind nebula would be very unusual and exciting.”

Although neutron stars are generally studied in radio and high-energy emissions, such as X-rays, this study demonstrates that new and interesting information about neutron stars can also be gained by studying them in the infrared. Using the new NASA James Webb Space Telescope, due to launch in 2021, astronomers will be able to further explore this newly opened discovery space in the infrared to better understand neutron star evolution.

###

In addition to Posselt, the research team included George Pavlov, and Kevin Luhman at Penn State; Ünal Ertan and Sirin Çaliskan at Sabanci University in Instanbul, Turkey; and Christina C. Williams at the University of Arizona. The research was supported by NASA, The Scientific and Technological Research Council of Turkey, the U.S. National Science Foundation, Penn State, the Penn State Eberly College of Science, and the Pennsylvania Space Grant Consortium.

Media Contact

Sam Sholtis
samsholtis@psu.edu
814-865-1390

 @penn_state

http://live.psu.edu 

Media Contact

Sam Sholtis EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors