Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The strange case of the missing dwarf

18.02.2015

New SPHERE instrument shows its power

Some pairs of stars consist of two normal stars with slightly different masses. When the star of slightly higher mass ages and expands to become a red giant, material is transferred to other star and ends up surrounding both stars in a huge gaseous envelope. When this cloud disperses the two move closer together and form a very tight pair with one white dwarf , and one more normal star [1].


The SPHERE instrument is shown shortly after it was installed on ESO's VLT Unit Telescope 3. The instrument itself is the black box, located on the platform to one side of the telescope.

Credit: ESO/J. Girard

One such stellar pair is called V471 Tauri [2]. It is a member of the Hyades star cluster in the constellation of Taurus and is estimated to be around 600 million years old and about 163 light-years from Earth. The two stars are very close and orbit each other every 12 hours. Twice per orbit one star passes in front of the other -- which leads to regular changes in the brightness of the pair observed from Earth as they eclipse each other.

A team of astronomers led by Adam Hardy (Universidad Valparaíso, Valparaíso, Chile) first used the ULTRACAM system on ESO's New Technology Telescope to measure these brightness changes very precisely. The times of the eclipses were measured with an accuracy of better than two seconds -- a big improvement on earlier measurements.

The eclipse timings were not regular, but could be explained well by assuming that there was a brown dwarf orbiting both stars whose gravitational pull was disturbing the orbits of the stars. They also found hints that there might be a second small companion object.

Up to now however, it has been impossible to actually image a faint brown dwarf so close to much brighter stars. But the power of the newly installed SPHERE instrument on ESO's Very Large Telescope allowed the team to look for the first time exactly where the brown dwarf companion was expected to be. But they saw nothing, even though the very high quality images from SPHERE should have easily revealed it [3].

"There are many papers suggesting the existence of such circumbinary objects, but the results here provide damaging evidence against this hypothesis," remarks Adam Hardy.

If there is no orbiting object then what is causing the odd changes to the orbit of the binary? Several theories have been proposed, and, while some of these have already been ruled out, it is possible that the effects are caused by magnetic field variations in the larger of the two stars [4], somewhat similar to the smaller changes seen in the Sun.

"A study such as this has been necessary for many years, but has only become possible with the advent of powerful new instruments such as SPHERE. This is how science works: observations with new technology can either confirm, or as in this case disprove, earlier ideas. This is an excellent way to start the observational life of this amazing instrument," concludes Adam Hardy.

###

Notes

[1] Such pairs are known as post-common-envelope binaries.

[2] This name means that the object is the 471st variable star (or as closer analysis shows, pair of stars) to be identified in the constellation of Taurus.

[3] The SPHERE images are so accurate that they would have been able to reveal a companion such as a brown dwarf that is 70 000 times fainter than the central star, and only 0.26 arcseconds away from it. The expected brown dwarf companion in this case was predicted to be much brighter.

[4] This effect is called the Applegate mechanism and results in regular changes in the shape of the star, which can lead to changes in the apparent brightness of the double star seen from Earth.

More information

This research was presented in a paper entitled "The First Science Results from SPHERE: Disproving the Predicted Brown Dwarf around V471 Tau" by A. Hardy et al., to appear in the Astrophysical Journal Letters on 18 February 2015.

The team is composed of A. Hardy (Universidad Valparaíso, Valparaíso, Chile; Millennium Nucleus "Protoplanetary Disks in ALMA Early Science", part of the Millennium Science Initiative Program, Universidad Valparaíso), M.R. Schreiber (Universidad Valparaíso), S.G. Parsons (Universidad Valparaíso), C. Caceres (Universidad Valparaíso), G. Retamales (Universidad Valparaíso), Z. Wahhaj (ESO, Santiago, Chile), D. Mawet (ESO, Santiago, Chile), H. Canovas (Universidad Valparaíso), L. Cieza (Universidad Diego Portales, Santiago, Chile; Universidad Valparaíso), T.R. Marsh (University of Warwick, Coventry, United Kingdom), M.C.P. Bours (University of Warwick), V.S. Dhillon (University of Sheffield, Sheffield, United Kingdom) and A. Bayo (Universidad Valparaíso).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Links

Research paper: http://www.eso.org/public/archives/releases/sciencepapers/eso1506/eso1506a.pdf

Photos of the VLT: http://www.eso.org/public/images/archive/category/paranal/

Contacts

Adam Hardy
Universidad Valparaíso
Valparaíso, Chile
Tel: +56 32 2508457
Email: adam.hardy@postgrado.uv.cl

Matthias Schreiber
Universidad de Valparaíso
Valparaíso, Chile
Tel: +56 32 2399279
Email: matthias@dfa.uv.cl

Richard Hook
ESO education and Public Outreach Department
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Richard Hook | EurekAlert!

Further reports about: Chile ESO Telescope Very Large Telescope astronomical observatory brown dwarf dwarf

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>