Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Solar System: More Supernova, Less Red Giant

11.06.2019

Meteorite analysis shows that our solar system consists of twice as much supernova dust than previously thought.

For scientists, meteorites are valuable witnesses of our early Solar System. They consist of the oldest building blocks of our planetary system but also contain inclusions of tiny stardust grains, which are older than our sun.


The most common type of stardust consists of silicate grains, which are only a few hundred nanometers in size. For the most part, the stardust in meteorites derives from the remains of red giant stars. A smaller yet significant percentage of stardust stems from supernova explosions.

Scientists from the Max Planck Institute for Chemistry have now discovered that the amount of silicate stardust originating from supernovae is twice as high as previously assumed.

They estimate the fraction to be between 25 and 30 percent. From this, they have determined that the dust and gas cloud from which our Solar System originated 4.6 billion years ago, contained about one percent of “real” supernova dust.

“Our study shows that a significant proportion of presolar stardust grains found in meteorites, which had been thought to originate from red giant stars, actually stems from supernova explosions,” says physicist Jan Leitner.

The Mainz-based scientists successfully proved this through the precise measurement of the oxygen and magnesium isotope ratios in silicate stardust grains. It emerged that the magnesium isotopic compositions in some of the examined silicate stardust grains can be explained by nova models, but not their oxygen isotope ratios. Although the latter can be explained by red giant star models, this is not the case for the magnesium isotopic compositions.

The measured isotopic compositions of both magnesium and oxygen can, however, be explained by more recent supernova models.

Researchers explain this phenomenon by the fact that the nuclear fusion processes that occur with supernovae, novae and red giants, take place under different conditions. This results in a large number of elements having distinctive isotopic signatures, which leave behind specific “fingerprints” within the silicate grains.

The original assumption that the vast proportion of stardust stems from red giants is based on analyses of oxygen isotope ratios in silicate grains, which differ in very distinctive ways from those of our sun.

The examined stardust grains were discovered in a variety of meteorites found in the Antarctic and the Sahara. In a previous study, Max Planck research scientists had identified the stardust grains by their anomalous oxygen isotopic compositions to determine the abundances of stardust in these meteorites.

The Max Planck research scientists were able to verify this with the help of a special mass spectrometer, the so-called NanoSIMS. This instrument is able to determine the isotopic composition of materials on a size scale of 50-100 nanometers. The precise measurement of the magnesium isotopes only became possible one and a half years ago through the acquisition of a new type of ion source. Before this the ion beam available for magnesium isotope measurements was wider than the grains of interest, precluding accurate analyses because of isotopic dilution with the surrounding material.

Glossary:
A supernova, according to astronomers, is the brief, bright flash of a star, significantly heavier than our sun, caused by an explosion at the end of its life cycle. The original star is destroyed in this process, and the majority of its matter released into interstellar space, leaving a neutron star or a black hole behind.

A red giant is a “dying” star, whose mass is comparable to our sun and that ends as a so-called white dwarf, i.e., a small, very compact star, after ejecting most of its material into interstellar space. Our sun will also become a red giant star in a few billion years, which will alter the oxygen isotopic composition on its surface.

In a nova explosion, hydrogen-rich material is transferred from a companion star to the surface of a white dwarf, triggering a thermonuclear explosion.

Wissenschaftliche Ansprechpartner:

Dr. Jan Leitner
Max Planck Institute for Chemistry
Phone: 06131-3055314
E-Mail: jan.leitner@mpic.de

Originalpublikation:

A New Population of Dust from Stellar Explosions among Meteoritic Stardust
Jan Leitner and Peter Hoppe

Nature Astronomy, June 2019

https://www.nature.com/articles/s41550-019-0788-x

doi: 10.1038/s41550-019-0788-x.

Dr. Susanne Benner | Max-Planck-Institut für Chemie
Further information:
http://www.mpic.de/
https://www.mpic.de/aktuelles/pressemeldungen/news/sonnensystem-mehr-supernova-weniger-roter-riese.html

More articles from Physics and Astronomy:

nachricht Quantum physics: On the way to quantum networks
27.01.2020 | Ludwig-Maximilians-Universität München

nachricht Physicists trap light in nanoresonators for record time
23.01.2020 | ITMO University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

The fight against multi-resistant pathogens

28.01.2020 | Health and Medicine

Atomic layer 3D printing

28.01.2020 | Life Sciences

Nanocontainers introduced into the nucleus of living cells

28.01.2020 | Interdisciplinary Research

VideoLinks
Science & Research
Overview of more VideoLinks >>>