Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Solar System: More Supernova, Less Red Giant

11.06.2019

Meteorite analysis shows that our solar system consists of twice as much supernova dust than previously thought.

For scientists, meteorites are valuable witnesses of our early Solar System. They consist of the oldest building blocks of our planetary system but also contain inclusions of tiny stardust grains, which are older than our sun.


The most common type of stardust consists of silicate grains, which are only a few hundred nanometers in size. For the most part, the stardust in meteorites derives from the remains of red giant stars. A smaller yet significant percentage of stardust stems from supernova explosions.

Scientists from the Max Planck Institute for Chemistry have now discovered that the amount of silicate stardust originating from supernovae is twice as high as previously assumed.

They estimate the fraction to be between 25 and 30 percent. From this, they have determined that the dust and gas cloud from which our Solar System originated 4.6 billion years ago, contained about one percent of “real” supernova dust.

“Our study shows that a significant proportion of presolar stardust grains found in meteorites, which had been thought to originate from red giant stars, actually stems from supernova explosions,” says physicist Jan Leitner.

The Mainz-based scientists successfully proved this through the precise measurement of the oxygen and magnesium isotope ratios in silicate stardust grains. It emerged that the magnesium isotopic compositions in some of the examined silicate stardust grains can be explained by nova models, but not their oxygen isotope ratios. Although the latter can be explained by red giant star models, this is not the case for the magnesium isotopic compositions.

The measured isotopic compositions of both magnesium and oxygen can, however, be explained by more recent supernova models.

Researchers explain this phenomenon by the fact that the nuclear fusion processes that occur with supernovae, novae and red giants, take place under different conditions. This results in a large number of elements having distinctive isotopic signatures, which leave behind specific “fingerprints” within the silicate grains.

The original assumption that the vast proportion of stardust stems from red giants is based on analyses of oxygen isotope ratios in silicate grains, which differ in very distinctive ways from those of our sun.

The examined stardust grains were discovered in a variety of meteorites found in the Antarctic and the Sahara. In a previous study, Max Planck research scientists had identified the stardust grains by their anomalous oxygen isotopic compositions to determine the abundances of stardust in these meteorites.

The Max Planck research scientists were able to verify this with the help of a special mass spectrometer, the so-called NanoSIMS. This instrument is able to determine the isotopic composition of materials on a size scale of 50-100 nanometers. The precise measurement of the magnesium isotopes only became possible one and a half years ago through the acquisition of a new type of ion source. Before this the ion beam available for magnesium isotope measurements was wider than the grains of interest, precluding accurate analyses because of isotopic dilution with the surrounding material.

Glossary:
A supernova, according to astronomers, is the brief, bright flash of a star, significantly heavier than our sun, caused by an explosion at the end of its life cycle. The original star is destroyed in this process, and the majority of its matter released into interstellar space, leaving a neutron star or a black hole behind.

A red giant is a “dying” star, whose mass is comparable to our sun and that ends as a so-called white dwarf, i.e., a small, very compact star, after ejecting most of its material into interstellar space. Our sun will also become a red giant star in a few billion years, which will alter the oxygen isotopic composition on its surface.

In a nova explosion, hydrogen-rich material is transferred from a companion star to the surface of a white dwarf, triggering a thermonuclear explosion.

Wissenschaftliche Ansprechpartner:

Dr. Jan Leitner
Max Planck Institute for Chemistry
Phone: 06131-3055314
E-Mail: jan.leitner@mpic.de

Originalpublikation:

A New Population of Dust from Stellar Explosions among Meteoritic Stardust
Jan Leitner and Peter Hoppe

Nature Astronomy, June 2019

https://www.nature.com/articles/s41550-019-0788-x

doi: 10.1038/s41550-019-0788-x.

Dr. Susanne Benner | Max-Planck-Institut für Chemie
Further information:
http://www.mpic.de/
https://www.mpic.de/aktuelles/pressemeldungen/news/sonnensystem-mehr-supernova-weniger-roter-riese.html

More articles from Physics and Astronomy:

nachricht Radon inferior to radium for electric dipole moments (EDM) searches
07.06.2019 | University of Liverpool

nachricht UV light may illuminate improvements for next generation electronic devices
06.06.2019 | Nagoya Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

Im Focus: 2D crystals conforming to 3D curves create strain for engineering quantum devices

A team led by scientists at the Department of Energy's Oak Ridge National Laboratory explored how atomically thin two-dimensional (2D) crystals can grow over 3D objects and how the curvature of those objects can stretch and strain the crystals. The findings, published in Science Advances, point to a strategy for engineering strain directly during the growth of atomically thin crystals to fabricate single photon emitters for quantum information processing.

The team first explored growth of the flat crystals on substrates patterned with sharp steps and trenches. Surprisingly, the crystals conformally grew up and...

Im Focus: Experiments and calculations allow examination of boron's complicated dance

Work opens a path to precise calculations of the structure of other nuclei.

In a study that combines experimental work and theoretical calculations made possible by supercomputers, scientists have determined the nuclear geometry of two...

Im Focus: Fraunhofer HHI and IAF demonstrate the first wireless real-time video transmission using Terahertz

The Fraunhofer Heinrich Hertz Institute HHI develops next-generation wireless transmission systems (Beyond 5G) based on Terahertz (THz) technologies. The THz technology supports significantly higher data transmission rates than current 4G and 5G mobile wireless technologies. Researchers of the department Photonic Networks and Systems, in collaboration with the Fraunhofer Institute for Applied Solid State Physics IAF, have succeeded in transmitting a 4K video in real-time over a wireless THz link. This was the first time this technology was successfully realized in a real-time experiment. A wireless transmission capacity of 100 Gbit/s was demonstrated over the THz link.

Requirements placed on transmission capacities in communication networks are continuously growing, driven by new applications such as Industry 4.0, autonomous...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

The Solar System: More Supernova, Less Red Giant

11.06.2019 | Physics and Astronomy

LED-ing the way: A clean and convenient method to oxidize plastic surfaces for industry

11.06.2019 | Materials Sciences

Tiny light box opens new doors into the nanoworld

11.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>