Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The seeing power of frogs

26.01.2015

A quantum light source proves that light-sensitive cells in frog eyes can detect single photons

Miniature light detectors in frog eyes known as retinal rod cells are directly and unambiguously shown to detect single photons of light — an astounding sensitivity considering that a humble 60 watt light bulb spews out a staggering 1020 photons per second. Using a specially developed light source that generates single photons, a new A*STAR study finds that a rod cell has an almost one-in-three chance of detecting an incoming photon.


Single photons from a tapered optical fiber (right) are directed at a pipette holding a rod cell taken from a frog’s retina.

Reproduced, with permission, from Ref. 1 © 2014 American Physical Society

Scientists have known for some time that rod cells are sensitive to single photons. This was inferred based on statistical modeling in studies that used classical light sources such as lamps, lasers and light-emitting diodes that generate a statistical distribution of photons. In contrast, the light source developed by Leonid Krivitsky and co-workers at the A*STAR Data Storage Institute and A*STAR Institute of Medical Biology is a truly single-photon source and hence eliminates the need to statistically analyze measurement results, thus enhancing measurement accuracy1.

“Our method is both direct and universal,” notes Krivitsky, “as it is not based on any particular statistical model of the cell response and thus does not involve any indirect assumptions.”

In the developed light source, a nonlinear optical crystal is irradiated with light from an ultraviolet laser. Most photons pass directly through the crystal, but approximately one in a million is split into two visible-light photons having twice the wavelength (532 nanometers) of the original photon (266 nanometers). One of these two photons is detected by a photodiode and used to trigger an acousto-optical modulator, causing it to divert the second photon to a tapered optical fiber directed at a pipette containing a rod cell from a frog’s eye (see image). Any signal produced by the rod cell is then detected.

Racing against the clock, since rod cells lose their viability after one to two hours, the researchers measured ten rods cells taken from ten different frogs. They found an average quantum efficiency of approximately 30 per cent — very close to that of human rod cells estimated from behavioral experiments. Krivitsky notes that rod-cell efficiency is comparable to the quantum efficiencies of state-of-the-art man-made single-photon detectors such as photomultipliers (40 per cent) and avalanche photodiodes (50 per cent); remarkably, rod cells occupy an area of only 5 by 50 micrometers and contain their own power supply.

The new light source could be further used to investigate how the quantum efficiency varies with wavelength, since it is easy to vary the wavelength of the generated single photons.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute and the Institute of Medical Biology. More information about the group’s research can be found at the Advanced Concepts & Nanotechnology webpage.

Reference:
[1] Phan, N. M., Cheng, M. F., Bessarab, D. A. & Krivitsky, L. A. Interaction of fixed number of photons with retinal rod cells. Physics Review Letters 112, 213601 (2014).


Associated links
A*STAR article

A*STAR Research | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>