Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The physics underlying complex biological architectures

08.02.2019

A building's architectural plans map out what's needed to keep it from falling down. But design is not just functional: often, it's also beautiful, with lines and shapes that can amaze and inspire.

Beautifully crafted architecture isn't limited to human-made structures. Nature is rife with ornate structures, from the spiraling fractal patterns of seashells to the intricately woven array of neurons in the brain.


These are four sets of pollen grains (from top left to bottom right: Alisma lanceolatum, Galium wirtgenii, Gaillardia aristata, Gomphrena globosa), showing the scanning electron microscopy image alongside the simulation of the physical model for the same geometry.

Credit: PalDat.org (SEM images) and Asja Radja (simulations)

Usage Restrictions: May only be used with appropriate caption or credit.

The microscopic world contains its fair share of intricate patterns and designs, such as the geometric patterns on individual grains of pollen. Scientists have been fascinated by these intricate structures, which are smaller than the width of a human hair, but have yet to determine how these patterns form and why they look the way they do.

Researchers from the University of Pennsylvania's Department of Physics & Astronomy have developed a model that describes how these patterns form, and how pollen evolved into a diverse range of structures.

Graduate student Asja Radja was the first author of the study, and worked with fellow graduate student Eric M. Horsley and former postdoc Maxim O. Lavrentovich, who is now working at the University of Tennessee. The study was led by associate professor Alison Sweeney.

Radja analyzed pollen from hundreds of flowering plant species in a microscopy database, including iris, pigweed, amaranth, and bougainvillea. She then developed an experimental method that involved removing the external layer of polysaccharide "snot" from the pollen grains, and taking high-resolution microscopic images that revealed the ornate details of the pollen as they formed at a micrometer scale.

Sweeney and Radja's original hypothesis was that the pollen spheres are formed by a buckling mechanism. Buckling occurs when materials are strong on the outside but pliable on the inside, causing the structure to shrink inwards and form divots, or "buckles," on the surface. But the data they collected didn't align with their initial idea.

"Alison taught me that with any biological system, you have to really stare at it in order to figure out exactly what's going on," Radja says about the hours she spent studying pollen images.

One of the key challenges with studying pollen was looking at the problem with a fresh perspective in order to think about what underlying physics could explain the structures.

The solution, published in Cell, represents the first theoretical physics-based framework for how pollen patterns form. The model states that pollen patterns occur by a process known as phase separation, which physicists have found can also generate geometric patterns in other systems.

An everyday example of phase separation is the separation of cream from milk; when milk sits at room temperature, cream rises to the top naturally without any additional energy, like mixing or shaking.

Radja was able to show that the "default" tendency of developing pollen spores is to undergo a phase separation that then results in detailed and concave patterns. "These intricate patterns might actually just be a happy consequence of not putting any energy into the system," says Radja.

However, if plants pause this natural pattern-formation process by secreting a stiff polymer that prevents phase separation, for example, they can control the shapes that form. These plants tend to have pollen spores that are smoother and more spherical.

Surprisingly, the smooth pollen grains, which require additional energy, occur more frequently than ornate grains, suggesting that smooth grains may provide an evolutionary advantage.

This biophysical framework will now enable researchers to study a much larger class of biological materials. Sweeney and her group will see if the same rules can explain much more intricate architectures in biology, like the bristles of insects or the cell walls of plants.

Sweeney's group is also working with materials engineer Shu Yang of Penn's School of Engineering and Applied Science to develop pollen-inspired materials. "Materials that are like pollen often have super-hydrophobicity, so you can very intricately control how water will interact with the surface," says Sweeney. "What's cool about this mechanism is that it's passive; if you can mimic the way pollen forms, you can make polymers go where you want them to go on their own without having to do complicated engineering that's expensive and hard to replicate."

###

The research was supported by the Kaufman Foundation New Initiative Award, the Packard Foundation Fellowship, the National Science Foundation CAREER Award 1351935, and a Simons Investigator Grant.

Media Contact

Erica K. Brockmeier
ekbrock@upenn.edu
215-898-8562

 @Penn

http://www.upenn.edu/pennnews 

Erica K. Brockmeier | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.cell.2019.01.014

Further reports about: biological materials cell walls human hair microscopic pollen grains spores

More articles from Physics and Astronomy:

nachricht Cryo-force spectroscopy reveals the mechanical properties of DNA components
08.02.2019 | Universität Basel

nachricht Physicists take big step in nanolaser design
07.02.2019 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

Im Focus: Finally available in a bottle

Researchers succeed in gaining access to an important chemical compound

Since the discovery of the first homoleptic metal carbonyl complex Ni(CO)4 more than 130 years ago, scientists try to obtain further such compounds formed from...

Im Focus: Escort service: The role of immune cells in the formation of metastases

Tumor cells use a certain type of immune cells, the so-called neutrophils, to enhance their ability to form metastases. Scientists have deciphered the mechanisms of this collaboration and found strategies for blocking them. This is reported by researchers from the University of Basel and the University Hospital of Basel in the scientific journal "Nature".

A better understanding of the features that define the interplay between cancer cells and immune cells is key to identifying new cancer therapies. Yet, focus...

Im Focus: Invisible tags: Physicists at TU Dresden write, read and erase using light

A team of physicists headed by Prof. Sebastian Reineke of TU Dresden developed a new method of storing information in fully transparent plastic foils. Their innovative idea was now published in the renowned online journal “Science Advances”.

Prof. Reineke and his LEXOS team work with simple plastic foils with a thickness of less than 50 µm, which is thinner than a human hair. In these transparent...

Im Focus: IT in cars: Computers on standby

In the future, cars will exchange data via radio and warn each other about obstacles and accidents. There are currently various radio standards in existence to allow this. However, it is almost impossible to compare them, because the requisite hardware is not yet on the market. To address this lack, researchers at the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI have developed a software system that will enable users to analyze the future wireless technology. For manufacturers, this is an ideal solution for testing interesting radio applications at an early stage.

Slowly but surely, the automobile is developing into the autonomous vehicle, as new functions are added with each new generation. Proximity radars are by now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

 
Latest News

The physics underlying complex biological architectures

08.02.2019 | Physics and Astronomy

Fluconazole Makes Fungi Sexually Active

08.02.2019 | Life Sciences

Scientists discover genes that help harmful bacteria thwart treatment

08.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>