Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Large Synoptic Survey Telescope: Unlocking the secrets of dark matter and dark energy

01.06.2015

The director of the Large Synoptic Survey Telescope (LSST) joins an astrophysicist and a theoretical physicist in a discussion about how LSST will delve into the 'dark universe' by taking an unprecedentedly enormous scan of the sky

At a traditional stone-laying ceremony outside La Serena, Chile on April 14th, construction officially began of the Large Synoptic Survey Telescope (LSST). This ambitious international astrophysics project is slated to start scanning the heavens in 2022. When it does, LSST should open up the "dark universe" of dark matter and dark energy--the unseen substance and force, respectively, composing 95 percent of the universe's mass and energy--as never before.


This is an artist's rendering of the proposed architecture for the Large Synoptic Survey Telescope at its site on the El Penon peak of Cerro Pachon in Chile.

Credit: LSST

On April 2, 2015, the Director of LSST, Steven Kahn, along with astrophysicist Sarah Bridle and theoretical physicist Hitoshi Murayama, spoke with The Kavli Foundation about how LSST's sweeping search for dark matter and dark energy will answer fundamental questions about our universe's make-up. In the process, LSST will help answer vexing questions about the universe's history and possibly reveal its ultimate fate.

"In terms of how much light it will collect and its field of view, LSST is about ten times bigger than any other survey telescope either planned or existing," said Kahn, the Cassius Lamb Kirk Professor in the Natural Sciences in the Kavli Institute for Particle Astrophysics and Cosmology of Physics (KIPAC) at Stanford University.

LSST will feature an 8.4-meter diameter mirror and a 3.2 gigapixel camera, the biggest digital camera ever built. Every few days, the telescope will survey the entire Southern Hemisphere's sky, hauling in 30 terabytes of data nightly. After just its first month of operations, LSST's camera will have observed more of the universe than all previous astronomical surveys combined.

This capability to rake in data, extended over a ten-year observing run, will yield a staggering amount of astronomical information. The telescope should observe some 20 billion galaxies and many tens of thousands of supernovae. In addition, LSST will help map the stars composing the Milky Way and spy reams of asteroids passing near Earth.

The galaxy and supernova observations, along with other data, will offer some of the most stringent tests of dark matter and dark energy ever conducted. Solving the riddle of dark energy will not only deepen our understanding of our universe's past, but also sketch out its future.

"Dark energy is accelerating the expansion of the universe and ripping it apart," said Murayama, the Director of the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) at the University of Tokyo and a professor at the Berkeley Center for Theoretical Physics at the University of California, Berkeley. "The questions we are asking are: Where is the universe going? What is its fate? Is it getting completely ripped apart at some point? Does the universe end? Or does it go forever?"

Murayama continued: "To understand these questions, it's like trying to understand how quickly the population of a given country is aging. You can't understand the trend of where the country is going just by looking at a small number of people. You have to do a census of the entire population. In a similar way, you need to really look at a vast amount of galaxies so you can understand the trend of where the universe is going. We are taking a cosmic census with LSST."

To analyze this census, researchers will chiefly rely on a technique called gravitational lensing. Foreground galaxies and their associated dark matter gravitationally bend the light streaming from background galaxies in an observable, measureable way. Gauging this gravitational lensing distortion in LSST's vast image collection will speak to the strength of dark energy, which is accelerating the expansion of the history, at different times in cosmic history.

"With the data, we're going to be able to make a three-dimensional map of the dark matter in the universe using gravitational lensing," said Bridle, a professor of astrophysics in the Extragalactic Astronomy and Cosmology research group of the Jodrell Bank Center for Astrophysics in the School of Physics and Astronomy at The University of Manchester. "Then we're going to use that to tell us about how the 'clumpiness' of the universe is changing with time, which is going to tell us about dark energy."

###

Read the full conversation with Kahn, Bridle and Murayama on The Kavli Foundation website: http://www.kavlifoundation.org/science-spotlights/delving-dark-universe-large-synoptic-survey-telescope

James Cohen | EurekAlert!

More articles from Physics and Astronomy:

nachricht CCNY-Yale researchers make shape shifting cell breakthrough
12.12.2018 | City College of New York

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>