Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The geometry of an electron determined for the first time

23.05.2019

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or coupling it with other spins is a challenge on which numerous research groups worldwide are working.


An electron in a quantum dot remains, with different probabilities, in certain locations (red ellipses). Using electric fields, the geometry of this wave function can be changed.

University of Basel, Departement of Physics

The stability of a single spin and the entanglement of various spins depends, among other things, on the geometry of the electrons – which previously had been impossible to determine experimentally.

Only possible in artificial atoms

Scientists in the teams headed by professors Dominik Zumbühl and Daniel Loss from the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have now developed a method by which they can spatially determine the geometry of electrons in quantum dots.

A quantum dot is a potential trap which allows to confine free electrons in an area which is about 1000 times larger than a natural atom. Because the trapped electrons behave similar to electrons bound to an atom, quantum dots are also known as “artificial atoms”.

The electron is held in the quantum dot by electric fields. However, it moves within the space and, with different probabilities corresponding to a wave function, remains in certain locations within its confinement.

Charge distribution sheds light

The scientists use spectroscopic measurements to determine the energy levels in the quantum dot and study the behavior of these levels in magnetic fields of varying strength and orientation. Based on their theoretical model, it is possible to determine the electron’s probability density and thus its wave function with a precision on the sub-nanometer scale.

“To put it simply, we can use this method to show what an electron looks like for the first time,” explains Loss.

Better understanding and optimization

The researchers, who work closely with colleagues in Japan, Slovakia and the US, thus gain a better understanding of the correlation between the geometry of electrons and the electron spin, which should be stable for as long as possible and quickly switchable for use as a qubit.

“We are able to not only map the shape and orientation of the electron, but also control the wave function according to the configuration of the applied electric fields. This gives us the opportunity to optimize control of the spins in a very targeted manner,” says Zumbühl.

The spatial orientation of the electrons also plays a role in the entanglement of several spins. Similarly to the binding of two atoms to a molecule, the wave functions of two electrons must lie on one plane for successful entanglement.

With the aid of the developed method, numerous earlier studies can be better understood and the performance of spin qubits can be further optimized in the future.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dominik Zumbühl, University of Basel, Department of Physics, Tel. +41 61 207 36 93, Email: dominik.zumbuhl@unibas.ch

Originalpublikation:

Leon C. Camenzind, Liuqi Yu, Peter Stano, Jeramy D. Zimmerman, Arthur C. Gossard, Daniel Loss, and Dominik M. Zumbühl
Spectroscopy of quantum dot orbitals with in-plane magnetic fields
Physical Review Letters (2019), doi: 10.1103/PhysRevLett.122.207701
https://doi.org/10.1103/PhysRevLett.122.207701

Peter Stano, Chen-Hsuan Hsu, Leon C. Camenzind, Liuqi Yu, Dominik Zumbühl, and Daniel Loss
Orbital effects of a strong in-plane magnetic field on a gate-defined quantum dot
Physical Review B (2019), doi: 10.1103/PhysRevB.99.085308
https://doi.org/10.1103/PhysRevB.99.085308

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

More articles from Physics and Astronomy:

nachricht Molecules move faster on a rough terrain
20.01.2020 | Université libre de Bruxelles

nachricht Spider-Man-style robotic graspers defy gravity
20.01.2020 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Molecules move faster on a rough terrain

20.01.2020 | Physics and Astronomy

Spider-Man-style robotic graspers defy gravity

20.01.2020 | Physics and Astronomy

Laser diode emits deep UV light

20.01.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>