Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Fingerprints of Molecules in Space

28.06.2018

Physicists at the University of Innsbruck are on the hunt for nitrogen containing molecules in space. Using terahertz spectroscopy, they directly measured two spectral lines for one particular molecule for the first time. The discovered frequencies are characteristic of the amide ion, a negatively charged nitrogen molecule. With the spectral lines now determined, this species can be searched for in space.

In 2014, astrophysicists discovered a spectral line in observational data from the Herschel Space Telescope and tentatively assigned it to the amide ion. It would have been the first proof of the existence of this molecule in space. Physicists within the group of Roland Wester from the Institute of Ion Physics and Applied Physics at the University of Innsbruck have now shown this assumption to be incorrect.


Interstellar clouds in the constellation of Sagittarius, a region in the centre of the Milkyway in which astrophysicists have suggested the amide ion may be found.

NASA, ESA, J. Hester (ASU)


Innsbruck physicists confined amide ions in this ion trap and investigated their behaviour under the influence of terahertz radiation.

Uni Innsbruck

Characteristic frequencies

In addition to stars, galaxies are populated by regions that contain gigantic dust and gas clouds. Such regions, making up the interstellar medium (ISM), act as the birthplace for new stars which form when the clouds collapse under their own gravity and reach sufficient densities for fusion reactions to occur. In order to better understand these processes, it is important to know exactly the chemical composition of the ISM which is most often determined via the frequencies (spectral lines) measured by radio telescopes.

In the case of the amide ion, the team led by Roland Wester has measured two previously unknown frequencies in the laboratory for the first time. The adopted method, known as terahertz spectroscopy, has allowed the lines to be determined a hundred times more accurately than was previously possible. "In this technique, wavelengths between microwaves and infrared light are used," explains the physicist. "This allows the rotation of very small molecules to be studied. For larger molecules, vibrations of whole molecular groups can be determined."

In a project funded by the European Research Council ERC, the group of Roland Wester has developed a method by which molecules confined in ion traps are excited with terahertz radiation. "The amide ion consists of a nitrogen atom and two hydrogen atoms, looks just like water and behaves very similar in terms of quantum mechanics," says Olga Lakhmanskaya from Roland Wester's team.

"For the first time, we directly measured the elementary excitation of the rotation of this molecule." The proof also came about thanks to a close collaboration with the theoretician Viatcheslav Kokoouline of the University of Central Florida, who was a visiting professor at the University of Innsbruck for a semester.

Tentative assignment disproved

The physicists from Innsbruck have now been able to show that the previously measured spectral line cannot be produced by amide ions by comparison with the data obtained from the Herschel Space Telescope. "We were able to show, with our measurements, that this tentative assignment is not correct," stresses Roland Wester. In the Universe one can find various nitrogen molecules such as ammonia but, according to the Innsbruck experiments, it remains to be shown that the amide ion is also present.

The second spectral line determined by the physicists however could assist in searching for this species in space. "We hope that in the future, with new telescopes, this line can be observed leading to its detection in space." Wester’s team now wants to apply the new method to molecules with four or five atoms, where vibrations and rotations are much more complex than with the triatomic amide.

Publication: Rotational Spectroscopy of a Triatomic Molecular Anion. Olga Lakhmanskaya, Malcolm Simpson, Simon Murauer, Markus Nötzold, Eric Endres, Viatcheslav Kokoouline, and Roland Wester. Phys. Rev. Lett. 120, 253003 DOI: 10.1103/PhysRevLett.120.253003

Contacts:
Univ.-Prof. Dr. Roland Wester
Department of Ion Physics and Applied Physics
University of Innsbruck
Tel.: +43 512 507-52620
E-Mail: roland.wester@uibk.ac.at
Web: https://www.uibk.ac.at/ionen-angewandte-physik/

Dr. Christian Flatz
Public Relations
University of Innsbruck
Tel.: +43 512 507-32022
E-Mail: christian.flatz@uibk.ac.at
Web: https://www.uibk.ac.at/

Weitere Informationen:

https://doi.org/10.1103/PhysRevLett.120.253003 - Rotational Spectroscopy of a Triatomic Molecular Anion. Olga Lakhmanskaya, Malcolm Simpson, Simon Murauer, Markus Nötzold, Eric Endres, Viatcheslav Kokoouline, and Roland Wester. Phys. Rev. Lett. 120, 253003
https://www.uibk.ac.at/ionen-angewandte-physik/ - Department of Ion Physics and Applied Physics

Dr. Christian Flatz | Universität Innsbruck

More articles from Physics and Astronomy:

nachricht An ultrafast glimpse of the photochemistry of the atmosphere
15.10.2019 | Ludwig-Maximilians-Universität München

nachricht Putting quantum bits into the fiber optic network: Launching the QFC-4-1QID project
15.10.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

New material captures carbon dioxide

15.10.2019 | Materials Sciences

Drugs for better long-term treatment of poorly controlled asthma discovered

15.10.2019 | Interdisciplinary Research

Family of crop viruses revealed at high resolution for the first time

15.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>