Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Dawn of DUNE

31.03.2015

A powerful planned neutrino experiment gains new members, new leaders and a new name.

The neutrino experiment formerly known as LBNE has transformed. Since January, its collaboration has gained about 50 new member institutions, elected two new spokespersons and chosen a new name: Deep Underground Neutrino Experiment, or DUNE.


Fermilab

This image shows the planned neutrino experiment that will send neutrinos 800 miles from Fermilab outside Chicago to the Sanford Underground Research Lab in South Dakota.

The proposed experiment will be the most powerful tool in the world for studying hard-to-catch particles called neutrinos. It will span 800 miles. It will start with a near detector and an intense beam of neutrinos produced at Fermi National Accelerator Laboratory in Illinois. It will end with a 10-kiloton far detector located underground in a laboratory at the Sanford Underground Research Facility in South Dakota. The distance between the two detectors will allow scientists to study how neutrinos change as they zip at close to the speed of light straight through the Earth.

“This will be the flagship experiment for particle physics hosted in the US,” says Jim Siegrist, associate director of high-energy physics for the US Department of Energy’s Office of Science. “It’s an exciting time for neutrino science and particle physics generally.”

In 2014, the Particle Physics Project Prioritization Panel identified the experiment as a top priority for US particle physics. At the same time, it recommended the collaboration take a few steps back and invite more international participation in the planning process.

Physicist Sergio Bertolucci, director of research and scientific computing at CERN, took the helm of an executive board put together to expand the collaboration and organize the election of new spokespersons.

DUNE now includes scientists from 148 institutions in 23 countries. It will be the first large international project hosted by the US to be jointly overseen by outside agencies.

This month, the collaboration elected two new spokespersons: André Rubbia, a professor of physics at ETH Zurich, and Mark Thomson, a professor of physics at the University of Cambridge. One will serve as spokesperson for two years and the other for three to provide continuity in leadership.

Rubbia got started with neutrino research as a member of the NOMAD experiment at CERN in the ’90s. More recently he was a part of LAGUNA-LBNO, a collaboration that was working toward a long-baseline experiment in Europe. Thomson has a long-term involvement in US-based underground and neutrino physics. He is the DUNE principle investigator for the UK.

Scientists are coming together to study neutrinos, rarely interacting particles that constantly stream through the Earth but are not well understood. They come in three types and oscillate, or change from type to type, as they travel long distances. They have tiny, unexplained masses. Neutrinos could hold clues about how the universe began and why matter greatly outnumbers antimatter, allowing us to exist.

“The science is what drives us,” Rubbia says. “We’re at the point where the next generation of experiments is going to address the mystery of neutrino oscillations. It’s a unique moment.”

Scientists hope to begin installation of the DUNE far detector by 2021. “Everybody involved is pushing hard to see this project happen as soon as possible,” Thomson says.

Contact Information
Andre Salles
Media Relations Specialist
asalles@fnal.gov
Phone: 630-840-6733

Andre Salles | newswise
Further information:
http://www.fnal.gov

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>