Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The crystal harmony of light

14.03.2017

High-harmonic lightwaves tailored on demand by crystal symmetry

Light is made of an oscillating electric and magnetic field. In order to tune its properties, one would ultimately like to shape these fields directly – a specifically daunting challenge when the oscillation frequency is high.


Polarization-shaped high-harmonics (bright waveform) emerge from the inside of a bulk crystal (lattice).

Fabian Langer, University of Regensburg – only to be used for this press release.

A team of physicists from Regensburg (Germany), Marburg (Germany), and Ann Arbor (USA) has now realized a way to directly tailor lightwaves emitted by accelerated electrons inside a solid, with the aid of the crystal’s symmetry. The results of this breakthrough will be reported in the upcoming issue of Nature Photonics.

For several years, physicists have been able to routinely produce extremely short flashes of light in the hard ultraviolet or even soft x-ray spectral region. For this purpose, a method called high-harmonic generation is employed, where a strong near-infrared laser rips electrons from an atomic gas and slams them back into the nuclei to emit ultraviolet radiation upon recollision.

This event happens on such a short timescale that the light emerges in very short bursts, so-called attosecond pulses (1 attosecond = 10-18 seconds). There are even more attoseconds in one second than seconds have passed since the beginning of our universe. This unbelievably short instant of time, however, is the natural scale on which electronic processes in atoms, molecules, and solids unfold.

To observe such processes scientists have employed attosecond flashes that record ultrafast snapshots. Following the principle of a stroboscopic camera and stitching a sequence of snapshots together, an extreme slow motion movie emerges.

As researchers try to take ever shorter snapshots to resolve the high-speed dynamics of electrons, it becomes increasingly important to fully control the flashes of light that are either used to freeze the motion in time or to drive such ultrafast processes.

Ideally physicists would like to tailor the underlying electromagnetic wave itself rather than only the brightness or the duration of the light burst. Now a team of physicists from Regensburg, Marburg and Ann Arbor has demonstrated exactly this by high-harmonic generation in a solid state crystal. Exploiting the symmetry of the crystal, ultrashort waveforms can be tailored with a level of precision that is not available in atomic gases.

The experiments were conducted at the Regensburg terahertz high-field source, where high-harmonics are produced from a bulk semiconductor. For the first time, the physicists could resolve details of the carrier wave of the high-harmonics. More importantly, they showed that the crystal orientation influences the light emission in an intriguing way: for certain directions every second high-harmonic pulse has the opposite sign of its predecessor.

The symmetry of the crystal can also be used to adjust for an arbitrary polarization angle of the high-harmonic lightwave. The experimental findings are explained by quantum mechanical simulations performed by physicists from Marburg and Ann Arbor. A particular interference mechanism of the excited and accelerated electrons inside the crystal is responsible for the observed behaviour.

This pioneering work leads the way towards solid-based attosecond sources that provide custom-tailored and adjustable lightwaves for the investigation and the control of ultrafast processes. As a particularly fascinating perspective, these optical waveforms may be used as supershort bias fields to drive electric currents at unprecedented clock rates. Such concepts known as lightwave electronics are now coming into closer reach.

Original publication: F. Langer, M. Hohenleutner, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Symmetry-controlled temporal structure of high-harmonic carrier fields from a bulk crystal”. Nature Photonics (2017).
Publication: DOI 10.1038/nphoton.2017.29


Contact:
Prof. Dr. Rupert Huber
Universität Regensburg
Lehrstuhl für Experimentelle und Angewandte Physik
Telefon: 0049 0941 943-2070
E-Mail: Rupert.Huber@ur.de

Prof. Dr. Stephan W. Koch
Philipps-Universität Marburg
Arbeitsgruppe Theoretische Halbleiterphysik
Telefon: 06421 28 21336
E-Mail: stephan.w.koch@physik.uni-marburg.de

Prof. Dr. Mackillo Kira
University of Michigan
1301 Beal Avenue
Ann Arbor, MI 48109-2122
United States of America
E-Mail: mackkira@umich.edu

Petra Riedl | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Physics and Astronomy:

nachricht When AI and optoelectronics meet: Researchers take control of light properties
20.11.2018 | Institut national de la recherche scientifique - INRS

nachricht How to melt gold at room temperature
20.11.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>