Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The bubbling of order

14.07.2017

Molecular order promotes cavitation

Cavitation describes the formation of small bubbles in liquids and their subsequent decay. The Dutch physicist Christiaan Huygens first discovered the phenomenon of cavitation in 1672, and researchers in hydrodynamics have been busy understanding this process ever since. Cavitation is the cause of very practical problems because when the bubbles collapse rapidly, they release enormous energies.


Growth of a cavitation domain

(c) MPIDS


Disclination lines in the liquid crystal flowing around an obstacle in a microfluidic channel

(c) MPIDS

For example, cavitation bubbles cause annual repair costs of millions of dollars to propellers spinning in sea water. The so-called cavitation fracture occurs because the surface is damaged by the high mechanical stresses. A research-team from the Max Planck Institute for Dynamics and Self-Organization (MPIDS) in Göttingen, the Technical University of Berlin (TU Berlin) and the Swiss Federal Institute of Technology Zurich (ETH Zurich) has now shown that cavitation can also occur at a very small scale in liquids with molecular order.

Thus, liquid crystals can very easily cavitate when flowing through microfluidic channels. Based on their results, the researchers hope in the future to develop bubble formation in different fluids, as well as to better understand processes in the cell, since biological building blocks of the cell have similar properties as liquid crystals. These results are now published by Tillmann Stieger and collaborators in the journal Nature Communications.

Order is the key

If a liquid moves quickly with respect to a solid object, the pressure drops. If this pressure drop reaches the vapor pressure, cavitation occurs. The phenomenon is known as hydrodynamic cavitation. The team of researchers from Göttingen, Berlin and Zurich has now found that cavitation in liquid crystals occurs already under very mild conditions - in contrast to the hitherto known aggressive methods. Due to their material properties, the molecules of the liquid crystals arrange parallel to one another in the flow, so that the formation of bubbles is energetically favored.

As in the big so in the small

This work originates from investigations by Dr. Anupam Sengupta during his PhD work at the MPIDS, who is now working as Human Frontiers Cross-Disciplinary Fellow in Zurich. The researchers discovered that liquid crystals cavitate very easily when they flow in tiny channels. In their experiments, they flowed liquid crystals in tiny channels with a diameter of 100 micrometers (the width of a hair). Downstream of an obstruction in the channel a pressure drop forms, where the scientists observed cavitation. Dr. Sengupta teamed up with Dr. Marco G. Mazza, head of a research group in the Department of Complex Fluids at the MPIDS, to carry out molecular dynamics simulations and study the problem theoretically.

The researchers observed that the more the molecules are aligned in the liquid crystals, the easier it is to cavitate. This means that the degree of order of the liquid crystals regulates the cavitation process. This discovery has implications for a serious limitation of microfluidics, namely the mixing of liquids in microfluidic devices. In the case of flows at the microscale, the mixing occurs mainly by molecular diffusion, a very slow process. The growth of cavitation bubbles and their breakdown can considerably accelerate the mixing process.

"This is an exciting new development in the more-than-100 year old field of liquid crystal research", emphasizes Dr. Marco G. Mazza. “Our work opens new possibilities to manipulate hydrodynamic flow through the order and topology of liquid crystals. This will be a direction we will pursue in the future, says Mazza concluding.

Weitere Informationen:

http://www.ds.mpg.de/3118513/170703_PM_cavitation
https://www.nature.com/articles/ncomms15550.pdf

Carolin Hoffrogge | Max-Planck-Institut für Dynamik und Selbstorganisation

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>