Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Telescopes to Give UC San Diego Researchers Glimpse of the Beginning of Time

11.01.2013
Where do we come from? What is the universe made of? Will the universe exist only for a finite time or will it last forever?

These are just some of the questions that University of California, San Diego physicists are working to answer in the high desert of northern Chile. Armed with a massive 3.5 meter (11.5 foot) diameter telescope designed to measure space-time fluctuations produced immediately after the Big Bang, the research team will soon be one step closer to understanding the origin of the universe. The Simons Foundation has recently awarded the team a $4.3 million grant to build and install two more telescopes. Together, the three telescopes will be known as the Simons Array.

“The Simons Array will inform our knowledge of the universe in a completely new way,” said Brian Keating, associate professor of Physics at UC San Diego’s Center for Astrophysics and Space Sciences. Keating will lead the project with Professor Adrian Lee of UC Berkeley.

Fluctuations in space-time, also known as “gravitational waves,” are gravitational perturbations that propagate at the speed of light and can penetrate “through” matter, like an x-ray. The gravitational waves are thought to have imprinted the “primordial soup” of matter and photons that later coalesced to become gases, stars and galaxies—all the structures that we now see. The photons left over from the Big Bang will be captured by the telescopes to give scientists a unique view back to the universe’s beginning.

The telescopes of the Simons Array—named in recognition of the grant—will focus light onto more than 20,000 detectors, each of which must be cooled nearly to absolute zero. The result will provide an unmatched combination of sensitivity, frequency coverage and sky coverage.

Last year, the first POLARBEAR (for Polarization of Background Radiation) telescope, which will comprise one third of the Simons Array, was set up in Chile’s Atacama Desert. The site is one of the highest and driest places on Earth at 17,000 feet above sea level, making it one of the planet’s best locations for such a study. The site’s high elevation means that it lies above half of the Earth’s atmosphere. Because water vapor absorbs microwaves, the dry climate allows the already thin atmosphere to transmit even more of the faint cosmic microwave background radiation. Since March 2012, the telescope has recorded data to identify an imprint of primordial gravitational waves on the cosmic microwave background radiation, the relic radiation remaining from the Big Bang.

While POLARBEAR was a major technological achievement, the single telescope is sensitive to just one frequency. Additional detectors in the new telescopes will measure the cosmic microwave background at different frequencies so that researchers can compare the data and subtract out contaminating radiation emitted from the Milky Way Galaxy. Together, the three telescopes will also be much more sensitive to the elusive gravitational wave signals, offering deeper insight into the origin of the universe.

Keating continued, “The Simons Array will have the same or better capabilities as a $1 billion satellite, and with NASA’s budget constraints, there are no planned space-based missions for this job.”

Scientists from UC San Diego, UC Berkeley, Lawrence Berkeley National Laboratory, University of Colorado, McGill University in Canada and the KEK Laboratory in Japan are collaborating on the project.

Based in New York City, the Simons Foundation was established in 1994 by Jim and Marilyn Simons. The foundation’s mission is to advance the frontiers of research in mathematics and the basic sciences. The Foundation is delighted to be able to help support this innovative investigation into the earliest moments of the universe.

Initial funding for the first POLARBEAR telescope came from the National Science Foundation, the James B. Ax Family Foundation and an anonymous donor.

For more information on the Simons Array, visit cosmology.ucsd.edu. More information on the Simons Foundation can be found at simonsfoundation.org.

Jade Griffin | Newswise
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht Observations of nearby supernova and associated jet cocoon provide new insights on gamma-ray bursts
18.01.2019 | George Washington University

nachricht A new twist on a mesmerizing story
17.01.2019 | ETH Zurich Department of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>