Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tel Aviv University-led team discovers new way supermassive black holes are 'fed'

15.01.2019

These 'giant monsters' were observed suddenly devouring gas in their surroundings

Supermassive black holes weigh millions to billions times more than our sun and lie at the center of most galaxies. A supermassive black hole several million times the mass of the sun is situated in the heart of our very own Milky Way.


This is an artistic impression of a gas disk feeding a massive black hole while emitting radiation.

Credit: NASA

Despite how commonplace supermassive black holes are, it remains unclear how they grow to such enormous proportions. Some black holes constantly swallow gas in their surroundings, some suddenly swallow whole stars.

But neither theory independently explains how supermassive black holes can "switch on" so unexpectedly and keep growing so fast for a long period.

A new Tel Aviv University-led study published today in Nature Astronomy finds that some supermassive black holes are triggered to grow, suddenly devouring a large amount of gas in their surroundings.

In February 2017, the All Sky Automated Survey for Supernovae discovered an event known as AT 2017bgt. This event was initially believed to be a "star swallowing" event, or a "tidal disruption" event, because the radiation emitted around the black hole grew more than 50 times brighter than what had been observed in 2004.

However, after extensive observations using a multitude of telescopes, a team of researchers led by Dr. Benny Trakhtenbrot and Dr. Iair Arcavi, both of TAU's Raymond & Beverly Sackler School of Physics and Astronomy, concluded that AT 2017bgt represented a new way of "feeding" black holes.

"The sudden brightening of AT 2017bgt was reminiscent of a tidal disruption event," says Dr. Trakhtenbrot. "But we quickly realized that this time there was something unusual. The first clue was an additional component of light, which had never been seen in tidal disruption events."

Dr. Arcavi, who led the data collection, adds, "We followed this event for more than a year with telescopes on Earth and in space, and what we saw did not match anything we had seen before."

The observations matched the theoretical predictions of another member of the research team, Prof. Hagai Netzer, also of Tel Aviv University.

"We had predicted back in the 1980s that a black hole swallowing gas from its surroundings could produce the elements of light seen here," says Prof. Netzer. "This new result is the first time the process was seen in practice."

Astronomers from the U.S., Chile, Poland and the U.K. took part in the observations and analysis effort, which used three different space telescopes, including the new NICER telescope installed on board the International Space Station.

One of the ultraviolet images obtained during the data acquisition frenzy turned out to be the millionth image taken by the Neil Gehrels Swift Observatory -- an event celebrated by NASA, which operates this space mission.

The research team identified two additional recently reported events of black holes "switched on," which share the same emission properties as AT 2017bgt. These three events form a new and tantalizing class of black hole re-activation.

"We are not yet sure about the cause of this dramatic and sudden enhancement in the black holes' feeding rate," concludes Dr. Trakhtenbrot. "There are many known ways to speed up the growth of giant black holes, but they typically happen during much longer timescales."

"We hope to detect many more such events, and to follow them with several telescopes working in tandem," says Dr. Arcavi. "This is the only way to complete our picture of black hole growth, to understand what speeds it up, and perhaps finally solve the mystery of how these giant monsters form."

###

American Friends of Tel Aviv University supports Israel's most influential, comprehensive and sought-after center of higher learning, Tel Aviv University (TAU). TAU is recognized and celebrated internationally for creating an innovative, entrepreneurial culture on campus that generates inventions, startups and economic development in Israel. TAU is ranked ninth in the world, and first in Israel, for producing start-up founders of billion-dollar companies, an achievement that surpassed several Ivy League universities. To date, 2,500 US patents have been filed by Tel Aviv University researchers -- ranking TAU #1 in Israel, #10 outside of the US and #43 in the world.

Media Contact

George Hunka
ghunka@aftau.org
212-742-9070

 @AFTAUnews

http://www.aftau.org 

George Hunka | EurekAlert!
Further information:
https://www.aftau.org/news-page-astronomy--astrophysics?&storyid4699=2432&ncs4699=3
http://dx.doi.org/10.1038/s41550-018-0661-3

More articles from Physics and Astronomy:

nachricht Unraveling materials' Berry curvature and Chern numbers from real-time evolution of Bloch states
18.02.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Gravitational waves will settle cosmic conundrum
15.02.2019 | Simons Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>