Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique for antihydrogen synthesis promises answers to mysteries of antimatter

08.12.2010
Researchers at RIKEN, Japan’s flagship research institution, have successfully devised the world’s first experimental technique for measuring ground-state hyperfine transitions of antihydrogen.

Researchers at RIKEN, Japan’s flagship research institution, have successfully devised the world’s first experimental technique for measuring ground-state hyperfine transitions of antihydrogen. By enabling scientists to test fundamental theories of symmetry and gravity, the new technique promises to shed light on some of the most profound mysteries of our universe.

One of the most puzzling findings to emerge from modern physics, the existence of antimatter is at the heart of some of the most challenging unsolved problems in science. Why is it that the universe today is made up almost exclusively of matter, and not antimatter? The standard model of particle physics, currently our best theory on the subatomic world, fails to provide an answer to this question.

Instead, scientists believe the answer may lie in tiny differences between the properties of matter and antimatter, manifested in violations of a principle known as CPT (charge, parity, time) symmetry. Antihydrogen, made up of an antiproton and a positron, is attractive for testing CPT symmetry given its simple structure. First produced in large quantities at CERN in 2002, antihydrogen was recently trapped for the first time in a widely-reported study by the international ALPHA collaboration, published last month in Nature.

... more about:
»ASACUSA »Alpha »Antihydrogen »CERN »CPT »Letters »RIKEN »Researchers

The new experimental technique, also developed at CERN in a project called ASACUSA, adopts a novel approach for testing CPT in antihydrogen. Whereas ALPHA focused on high-precision laser spectroscopy measurement of 1S-2S electron transitions, ASACUSA uses high-precision microwave spectroscopy to study much smaller hyperfine transitions. The latter approach does not require that atoms be trapped for their properties to be measured, thus making it possible to study an actual beam of antihydrogen.

The new experimental setup, which produces antihydrogen by colliding positrons and antiprotons in a novel “cusp” trap, is an essential precursor to creating such a beam. Initial findings reported in the journal Physical Review Letters indicate that more than 7% of all antiprotons injected into the trap successfully combine to form antihydrogen, suggesting that tests of CPT symmetry are not far away. Together with the studies on trapped antihydrogen, new experiments promise groundbreaking insights into the nature of antimatter, revolutionizing our understanding of matter and the universe.

For more information, please contact:

Dr. Yasunori Yamazaki
Atomic Physics Laboratory
RIKEN Advanced Science Institute
Tel: +81-(0)48-467-9428 / Fax: +81-(0)48-467-8497
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
Reference:
Y. Enomoto, N. Kuroda, K. Michishio, C.H. Kim, H. Higaki, Y. Nagata, Y. Kanai, H.A. Torii, M. Corradini, M. Leali, E. Lodi-Rizzini, V. Mascagna, L. Venturelli, N. Zurlo, K. Fujii, M. Ohtsuka, K. Tanaka, H. Imao, Y. Nagashima, Y. Matsuda, B. Juhasz, A. Mohri, and Y. Yamazaki. Synthesis of Cold Antihydrogen in a Cusp Trap. Physical Review Letters (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: ASACUSA Alpha Antihydrogen CERN CPT Letters RIKEN Researchers

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>