Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Sets Upper Limit for Atmospheric Depth on Uranus and Neptune

23.05.2013
What is the long-range weather forecast for the planets Uranus and Neptune?

These giants are home to extreme winds blowing at speeds of over 1,000 km/hour, hurricane-like storms as large around as Earth, immense weather systems that last for years, and fast-flowing jet streams. Both planets feature similar climates, despite the fact that Uranus is tipped on its side, with the pole facing the sun during winter.


Image from the Voyager 2 flyby of Neptune in August 1989 (NASA).

In the middle is the Great Dark Spot, accompanied by bright, white clouds that undergo rapid changes in appearance. To the south of the Great Dark Spot is the bright feature that Voyager scientists nicknamed "Scooter." Still farther south is the feature called "Dark Spot 2," which has a bright core. As each feature moves eastward at a different velocity, they are rarely aligned this way. Wind velocities near the equator are westward, reaching 1,300 km/h, while those at higher latitudes are eastward, peaking at 900 km/h.

The winds on these planets have been observed on their outer surfaces; however, to get a grasp of their weather systems, we need to have an idea of what’s going on underneath. For instance, do the atmospheric patterns arise from deep down in the planet, or are they confined to shallower processes nearer the surface? New research from the Weizmann Institute of Science, the University of Arizona, and Tel Aviv University, which was published online Thursday in Nature, shows that the wind patterns seen on the surface can extend only so far down on these two worlds.

Understanding the atmospheric circulation is not simple for a planet without a solid surface, where Earth-style boundaries between solid, liquid, and gas layers do not exist. Since their discovery in the 1980s by the Voyager 2 spacecraft, the vertical extent of these strong atmospheric winds has been a major puzzle – one that influences our understanding of the physics governing the atmospheric dynamics and internal structure of these planets. But a team led by Dr. Yohai Kaspi of the Weizmann Institute’s Department of Environmental Sciences and Energy Research realized they had a way, based on a novel method for analyzing the planets’ gravitational fields, to determine an upper limit for the thickness of the atmospheric layer.

Deviations in the distribution of mass in planets cause measurable fluctuations in the gravitational field. On Earth, for example, an airplane flying near a large mountain feels the slight extra gravitational pull of that mountain. Like Earth, the giant planets of the solar system are rapidly rotating bodies. In fact, all of them rotate faster than Earth; the rotation periods of Uranus and Neptune are about 17 and 16 hours, respectively. Because of this rapid rotation, the winds swirl around regions of high and low pressure. (In a non-rotating body, flow would be from high to low pressure.) This lets researchers deduce the relations between the distribution of pressure and density, and the planets’ wind field. These physical principles enabled Dr. Kaspi and his co-authors to calculate, for the first time, the gravity signature of the wind patterns and, thus, create a wind-induced gravity map of these planets.

By computing the gravitational fields of a large range of ideal planet models (meaning ones with no wind) – a task conducted by team member Dr. Ravit Helled of Tel Aviv University – and comparing them with the observed gravitational fields, upper limits to the meteorological contribution to the gravitational fields were obtained. This enabled Dr. Kaspi’s team, which included Profs. Adam Showman and Bill Hubbard of the University of Arizona and Prof. Oded Aharonson of the Weizmann Institute, to show that the streams of gas observed in the atmosphere are limited to a “weather-layer” of no more than about 1,000 km in depth, which makes up only a fraction of a percent of the mass of these planets.

Although no spacecraft missions to Uranus and Neptune are planned for the near future, Dr. Kaspi anticipates that the team’s findings will be useful in the analysis of another set of atmospheric circulation patterns that will be closely observed soon: those of Jupiter. Dr. Kaspi, Dr. Helled, and Prof. Hubbard are part of the science team for NASA’s Juno spacecraft to Jupiter. Juno was launched in 2011; upon reaching Jupiter in 2016 it will provide very accurate measurements of the gravity field of that giant, gaseous planet. By using the same methods as the present study, Dr. Kaspi anticipates that the team will be able to obtain the same type of information they acquired for Uranus and Neptune, placing constraints on the depth of the atmospheric dynamics of this planet.

Uranus and Neptune are the farthest planets in the solar system, and there are still many open questions regarding their formation and composition. This study has implications for revealing the mysteries of their deep, dark interiors, and may even provide information about how these planets were formed. Moreover, many of the extrasolar planets detected around other stars have been found to have masses similar to those of Uranus and Neptune, so this research will be important for understanding like-sized extrasolar planets, as well.

Prof. Oded Aharonson’s research is supported by the Helen Kimmel Center for Planetary Science, which he heads; the J & R Center for Scientific Research; and the estate of Joseph and Erna Lazard.

Weizmann Institute of Science in Rehovot, Israel, is one of the world’s top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise
Further information:
http://www.acwis.org

More articles from Physics and Astronomy:

nachricht Beyond the brim, Sombrero Galaxy's halo suggests turbulent past
21.02.2020 | NASA/Goddard Space Flight Center

nachricht 10,000 times faster calculations of many-body quantum dynamics possible
21.02.2020 | Christian-Albrechts-Universität zu Kiel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>