Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team develops new metamaterial device

26.02.2009
Solid-state metamaterial device tames terahertz frequency

An engineered metamaterial proved it can function as a state-of-the-art device in the complex terahertz range of the electromagnetic spectrum, setting a standard of performance for modulating tiny waves of radiation, according to a team of researchers from Boston College, the Los Alamos and Sandia national laboratories, and Boston University.

An electrical current applied to the metamaterial – a hybrid structure of metallic split-ring resonators – controlled the phase of a terahertz (THz) beam 30 times faster and with far greater precision than a conventional optical device, the researchers report in the current online edition of the journal Nature Photonics.

The discovery marks a milestone in the use of metamaterials and terahertz radiation, a safe, non-ionizing frequency that is the subject of a growing body of research and viewed as a promising component in applications that include advanced security screening systems and imaging technologies.

"This is a true metamaterial device," Boston College Asst. Prof. of Physics Willie J. Padilla, one of the co-authors of the paper, said. "This highlights the fact that you can make solid state devices at terahertz frequencies with metamaterials."

Constructed on the micron-scale, metamaterials are composites that use unique metallic contours in order to produce responses to light waves, giving each metamaterial its own unique properties beyond the elements of the actual materials in use. Within the past decade, researchers have sought ways to significantly expand the range of material responses to waves of electromagnetic radiation – classified by increasing frequency as radio waves, microwaves, terahertz radiation, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays. These metamaterials have demonstrated numerous novel effects that defy accepted electromagnetic principles.

Previously, in systems known as THz time domain spectrometers, the flow of terahertz radiation has been modulated indirectly by optical choppers, mechanical devices that either blocked a laser or allowed it to pass through. This "all or nothing" approach – similar to opening and closing the shutter of a camera – limits the speed with which one can manipulate terahertz waves since the chopper's mechanical components are too slow, Padilla says.

The metamaterial devised by the research team electronically controlled the flow of terahertz radiation over roughly 70 percent of the frequency band – not simply at the points of maximum or minimum frequency.

"We can apply an electronic signal to this device, thus making it opaque to stop terahertz, or transparent to allow terahertz through," Padilla said. "Eventually, you can turn it on and off very quickly – and that allows you to modulate the beam at a very specific frequency."

Because the metamaterial device is solid-state, eliminating moving parts, it is 30 times faster than the optical chopper, according to the report, co-authored by Hou-Tong Chen, Abul K. Azad and Antoinette J. Taylor of Los Alamos National Laboratory, Michael J. Cich of Sandia National Laboratories and Richard D. Averitt of Boston University

"The advantage of the metamaterial is you are doing it electronically," Padilla said. "If you want to build a device, the advantage of this is that it is all solid-state and voltage controlled. You have no moving parts. Therefore, you can modulate at very high speeds."

These kinds of controls have been developed for microwave and optical frequencies and led to a number of key breakthroughs, the researchers note. But the technologies have not extended to the terahertz frequency.

Padilla said a solid-state metamaterial device is a critical step toward improved terahertz devices, such as cameras or scanners.

"What we've shown with this metamaterial is that it is now improved to the point where it could be used as a device," Padilla said. "It could be the device you could use to build a terahertz system."

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu
http://www2.bc.edu/~padillaw/

More articles from Physics and Astronomy:

nachricht When AI and optoelectronics meet: Researchers take control of light properties
20.11.2018 | Institut national de la recherche scientifique - INRS

nachricht How to melt gold at room temperature
20.11.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>