Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team announces breakthrough observation of Mott transition in a superconductor

14.09.2015

An international team of researchers, including the MESA+ Institute for Nanotechnology at the University of Twente in the Netherlands and the U.S. Department of Energy's Argonne National Laboratory, announced today in Science the observation of a dynamic Mott transition in a superconductor.

The discovery experimentally connects the worlds of classical and quantum mechanics and illuminates the mysterious nature of the Mott transition. It also could shed light on non-equilibrium physics, which is poorly understood but governs most of what occurs in our world. The finding may also represent a step towards more efficient electronics based on the Mott transition.


Scientists announced the first observation of a dynamic vortex Mott transition, which experimentally connects the worlds of quantum mechanics and classical physics and could shed light on the poorly understood world of non-equilibrium physics.

Image courtesy Valerii Vinokur, Argonne National Laboratory/Science

Since its foundations were laid in the early part of the 20th century, scientists have been trying to reconcile quantum mechanics with the rules of classical or Newtonian physics (like how you describe the path of an apple thrown into the air--or dropped from a tree). Physicists have made strides in linking the two approaches, but experiments that connect the two are still few and far between; physics phenomena are usually classified as either quantum or classical, but not both.

One system that unites the two is found in superconductors, certain materials that conduct electricity perfectly when cooled to very low temperatures. Magnetic fields penetrate the superconducting material in the form of tiny filaments called vortices, which control the electronic and magnetic properties of the materials.

These vortices display both classical and quantum properties, which led researchers to study them for access to one of the most enigmatic phenomena of modern condensed matter physics: the Mott insulator-to-metal transition.

The Mott transition occurs in certain materials that according to textbook quantum mechanics should be metals, but in reality turn insulators. A complex phenomenon controlled by the interactions of many quantum particles, the Mott transition remains mysterious--even whether or not it's a classical or quantum phenomenon is not quite clear. Moreover, scientists have never directly observed a dynamic Mott transition, in which a phase transition from an insulating to a metallic state is induced by driving an electrical current through the system; the disorder inherent in real systems disguises Mott properties.

At the University of Twente, researchers built a system containing 90,000 superconducting niobium nano-sized islands on top of a gold film. In this configuration, the vortices find it energetically easiest to settle into energy dimples in an arrangement like an egg crate--and make the material act as a Mott insulator, since the vortices won't move if the applied electric current is small.

When they applied a large enough electric current, however, the scientists saw a dynamic Mott transition as the system flipped to become a conducting metal; the properties of the material had changed as the current pushed it out of equilibrium.

The vortex system behaved exactly like an electronic Mott transition driven by temperature, said Valerii Vinokur, an Argonne Distinguished Fellow and corresponding author on the study. He and study co-author Tatyana Baturina, then at Argonne, analyzed the data and recognized the Mott behavior.

"This experimentally materializes the correspondence between quantum and classical physics," Vinokur said.

"We can controllably induce a phase transition between a state of locked vortices to itinerant vortices by applying an electric current to the system," said Hans Hilgenkamp, head of the University of Twente research group. "Studying these phase transitions in our artificial systems is interesting in its own right, but may also provide further insight in the electronic transitions in real materials."

The system could further provide scientists with insight into two categories of physics that have been hard to understand: many-body systems and out-of-equilibrium systems.

"This is a classical system that which is easy to experiment with and provides what looks like access to very complicated many-body systems," said Vinokur. "It looks a bit like magic."

As the name implies, many-body problems involve a large number of particles interacting; with current theory they are very difficult to model or understand.

"Furthermore, this system will be key to building a general understanding of out-of-equilibrium physics, which would be a major breakthrough in physics," Vinokur said.

The Department of Energy named five great basic energy scientific challenges of our time; one of them is understanding and controlling out-of-equilibrium phenomena. Equilibrium systems--where there's no energy moving around--are now understood quite well. But nearly everything in our lives involves energy flow, from photosynthesis to digestion to tropical cyclones, and we don't yet have the physics to describe it well. Scientists think a better understanding could lead to huge improvements in energy capture, batteries and energy storage, electronics and more.

As we seek to make electronics faster and smaller, Mott systems also offer a possible alternative to the silicon transistor. Since they can be flipped between conducting and insulating with small changes in voltage, they may be able to encode 1s and 0s at smaller scales and higher accuracy than silicon transistors.

'Initially, we were studying the structures for completely different reasons, namely to investigate the effects of inhomogeneities on superconductivity," Hilgenkamp said. "After discussing with Valerii Vinokur at Argonne, we looked more specifically into our data and were quite amazed to see that it revealed so nicely the details of the transition between the state of locked and moving vortices. There are many ideas for follow up studies, and we look forward to our continued collaboration."

###

The results were printed in the study "Critical behavior at a dynamic vortex insulator-to-metal transition," released today in Science. Other co-authors are associated with the Siberian Branch of Russian Academy of Science, the Rome International Center for Materials Science Superstripes, Novosibirsk State University, the Moscow Institute of Physics and Technology and Queen Mary University of London.

This research was supported by the Netherlands Organization for Scientific Research (NWO) and Foundation for Fundamental Research on Matter (FOM); the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division; the Ministry of Education and Science of the Russian Federation; the Alexander von Humboldt Foundation; and the Marie Curie Intra-European Fellowships for Career Development.

The University of Twente is a modern, entrepreneurial university, leading in the area of new technologies and a catalyst for change, innovation and progress in society. Our strength lies in our capacity to combine. We are working on future technologies including: ICT, biotechnology and nanotechnology for which behavioural and social science research are essential. After all, the most interesting and relevant innovations take place at the cutting edge of these technologies and their impact on humanity and societies.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Justin Breaux
media@anl.gov
630-252-5593

 @argonne

http://www.anl.gov 

Justin Breaux | EurekAlert!

More articles from Physics and Astronomy:

nachricht Supercomputers without waste heat
07.12.2018 | Universität Konstanz

nachricht DF-PGT, now possible through massive sequencing techniques
06.12.2018 | Universitat Autonoma de Barcelona

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>