Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taming chaos: Calculating probability in complex systems

21.03.2018

A new method efficiently transforms trajectories from dynamical systems into a finite set of variables

Daily weather patterns, brain activity on an EEG (electroencephalogram) and heartbeats on an EKG (electrocardiogram) each generate lines of complex data. To analyze this data, perhaps to predict a storm, seizure or heart attack, researchers must first divide up this continuous data into discrete pieces -- a task that is difficult to perform simply and accurately.


The schematic details the steps of the new method for transforming data from a time series into symbols that can be used to calculate probabilities in complex systems.

Credit: Nicolás Rubido

Researchers from the Universidad de la República in Uruguay and the University of Aberdeen in Scotland have devised a new method to transform data from complex systems, reducing the amount of important information lost, while still using less computing power than existing methods. They describe this new method, which enables the estimation of probabilities in dynamical systems, in the current issue of Chaos, from AIP Publishing.

Historically, researchers have divided up data from a dynamical system through Markov partitions -- a function that describes a point in space in relation to time, such as a model that describes the swing of a pendulum. But Markov partitions are often impractical in real scenarios. In the new approach, researchers use movable marginal partitions to search the space of observed variables that make up time series data for an approximate Markov partition.

"Markov partitioning is transforming a continuous trajectory of a dynamical system stored in variables of high resolution into something discrete that can be stored in a finite set of variables with finite resolution, for instance, an alphabet," said Nicolás Rubido of the Universidad de la República.

A commonly used approximate method already exists that slices up the data from a time series into the bins of a histogram, but it uses bins that are all the same size. In this new study, the researcher set the bin boundaries in a way that reduces unpredictability in each bin. The new process transforms bins into easy-to-handle symbolic sequences that contain most of the relevant information from the system. Rubido likens the process to compressing a digital photo to a lower resolution, ensuring you can still make out all the objects in the image.

The new method can be useful in analyzing any kind of time series, such as predicting a power outage by accounting for power plant production, the fluctuating input of renewable energy sources and the changing demands of consumers. Rubido pointed out that this new approach offers no advantage over some of the existing methods for very simple cases, but said it could be especially useful for analyzing high-dimension dynamical systems, which quickly overwhelm existing computing power.

"The higher the complexity, the more applicable and suitable the method will be," Rubido said.

Next, Rubido and his team will work to optimize the method. Currently, researchers use "brute force" to set the boundaries of each bin, but they could try moving the boundaries back and forth in a controlled way to ensure that they're getting the most information possible in each variable. Once their method is optimized, the researchers plan to tackle more complex systems that have eluded analysis.

###

The article, "Entropy-based generating Markov partitions for complex systems," is authored by Nicolás Rubido, Celso Grebogi and Murilo Baptista. The article appeared in Chaos March 20, 2018 (DOI: 10.1063/1.5002097) and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5002097.

ABOUT THE JOURNAL

Chaos is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See http://chaos.aip.org.

Media Contact

Julia Majors
media@aip.org
301-209-3090

 @AIPPhysicsNews

http://www.aip.org 

Julia Majors | EurekAlert!

More articles from Physics and Astronomy:

nachricht Argonne and CERN weigh in on the origin of heavy elements
31.03.2020 | DOE/Argonne National Laboratory

nachricht Physicist from Hannover Develops New Photon Source for Tap-proof Communication
30.03.2020 | Leibniz Universität Hannover

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection

31.03.2020 | Life Sciences

A 'cardiac patch with bioink' developed to repair heart

31.03.2020 | Life Sciences

Artificial intelligence can speed up the detection of stroke

31.03.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>