Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking a SMART sidelong look at Lunar Peak of Eternal Light

26.09.2008
Three-dimensional views of the mountainous terrain surrounding a “peak of eternal light” near the Moon’s south pole have been released by the European Space Agency. Dr Detlef Koschny will present the images at the European Planetary Science Congress in Münster on Friday 26th September.

Images taken by the AMIE camera carried by ESA’s SMART-1 mission have been used to create digital elevation model of the peak, which is almost continuously exposed to sunlight.

“AMIE is not a stereo camera, so producing a 3-D model of the surface has been a challenge,” said Dr Koschny. “We’ve used a technique where we use the brightness of reflected light to determine the slope and, by comparing several images, put together a model that produces a shadow pattern that matches those observed by SMART-1.”

AMIE took a total of 113 images of the peak, located close to the rim of the Shackleton Crater which lies on the lunar south pole. In all but four of the images, the peak was illuminated by sunlight. This is of particular interest in planning future manned missions to the Moon, as it would mean that solar panels could be used almost constantly to generate an electricity supply for a lunar base.

In addition, the shadowed craters nearby are in constant darkness and may hold water ice deposited over millennia by cometary impacts and hydrogen and oxygen particles contained in the solar wind. This potential water supply would also be a vital resource for any lunar base.

The team, led by Dr Björn Grieger of ESA’s European Space Astronomy Centre in Madrid, selected five of the AMIE images showing the peak illuminated from different angles. They mapped all the pixels onto a grid, defining the bright and dark areas. The data from the five images were then compared to produce estimates of the slope angles and the rendered elevation model was iteratively adjusted to produce a shadow match. The original AMIE images were then projected onto the retrieved model. To clearly visualise the topography, the elevation has been exaggerated five times.

SMART-1 orbited the Moon between November 2004 and September 2006, covering a full seasonal cycle.

Anita Heward | alfa
Further information:
http://www.europlanet-eu.org/demo/index.php?option=com_content&task=view&id=130

More articles from Physics and Astronomy:

nachricht Thin films from Braunschweig on the way to Mercury
19.10.2018 | Fraunhofer-Institut für Schicht- und Oberflächentechnik IST

nachricht Extremely close look at electron advances frontiers in particle physics
19.10.2018 | National Science Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>