Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Syracuse physicists confirm existence of rare pentaquarks discovery

15.07.2015

Discovery marks culmination of decades-long search for elusive particles

Physicists in Syracuse University's College of Arts and Sciences have confirmed the existence of two rare pentaquark states. Their discovery, which has taken place at the CERN Large Hadron Collider (LHC) in Geneva, Switzerland, is said to have major implications for the study of the structure of matter.


Syracuse University Professors Sheldon Stone and Tomasz Skwarnicki, doctoral student Nathan Jurik and former University research associate Liming Zhang are on the team that has confirmed the existence of two rare pentaquark states

Courtesy of CERN

It also puts to rest a 51-year-old mystery, in which American physicist Murray Gell-Mann famously posited the existence of fundamental subatomic constituents called quarks, which form particles such as protons. In 1964, he said that, in addition to a constituent with three quarks, there could be one with four quarks and an anti-quark, known as a "pentaquark." Until now, the search for pentaquarks has been fruitless.

"The statistical evidence of these new pentatquark states is beyond question," says Sheldon Stone, Distinguished Professor of Physics, who helped engineer the discovery. "Although some positive evidence was reported around 10 years ago, those results have been thoroughly debunked. Since then, the LHCb [Large Hadron Collider beauty] collaboration has been particularly deliberate in its study."

In addition to Stone, the research team includes other physicists with ties to Syracuse: Tomasz Skwarnicki, professor of physics; Nathan Jurik G'16, a Ph.D. student; and Liming Zhang, a former University research associate who is now an associate professor at Tsinghua University in Beijing, China.

Liming, in fact, is presenting the findings at a LHCb workshop on Wednesday, July 22, at CERN.

Stone credits Gell-Mann, a Nobel Prize-winning scientist who spent much of his career at Caltech, for postulating the existence of quarks, which are fractionally charged objects that make up matter. "He predicted that strongly interacting particles [hadrons] are formed from quark-antiquark pairs [mesons] or from three quarks [baryons]," Stone says. "This classification scheme, which has grown to encompass hadrons with four and five quarks, underscores the Standard Model, which explains the physical make-up of the Universe."

Stone says that, while his team's discovery is remarkable, it still begs many questions. One of them is the issue of how quarks bind together. The traditional answer has been a residual nuclear force, approximately 10 million times stronger than the chemical binding in atoms.

But not all bindings are created equal, Skwarnicki says. "Quarks may be tightly bound or loosely bound in a meson-baryon molecule," he explains. "The color-neutral meson and baryon feel a residual strong force [that is] similar to the one binding nucleons to form nuclei."

Adds Stone: "The theory of strong interactions is the only strongly coupled theory we have. It is particularly important for us to understand, as it not only describes normal matter, but also serves as a precursor for future theories."

The discovery is the latest in a string of successes for Syracuse's Department of Physics, which made international headlines last year, when Skwarnicki helped prove the existence of a meson named Z(4430), with two quarks and two antiquarks.

Much of this cutting-edge work occurs at CERN, where Stone oversees more than a dozen Syracuse researchers. CERN houses four multinational experiments, each with its own detector for collecting data from the LHC particle accelerator.

Media Contact

Rob Enslin
rmenslin@syr.edu
315-443-3403

http://www.syr.edu 

Rob Enslin | EurekAlert!

Further reports about: CERN Hadron LHC LHCb Large Hadron Collider implications physics

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>