Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SwRI scientists develop solar observatory for use on suborbital manned space missions

12.12.2014

Southwest Research Institute (SwRI) is preparing to unveil a new, miniature portable solar observatory for use onboard a commercial, manned suborbital spacecraft. The SwRI Solar Instrument Pointing Platform (SSIPP) will be on exhibit at the fall meeting of the American Geophysical Union (AGU), Dec. 16-19, at the Moscone Center in San Francisco, Calif.

Using reusable suborbital commercial spacecraft for the SSIPP development effort improves on a traditional space instrument development process that goes back to the dawn of the space age, according to principal investigator Dr. Craig DeForest, a principal scientist in SwRI’s Space Science and Engineering Division.


Image Courtesy of Southwest Research Institute

The SwRI Solar Instrument Pointing Platform (SSIPP).

“Development and testing of space instrumentation has been essentially unchanged since World War II: New instruments were mated to sounding rockets, which are hand-built, miniature spacecraft that fly five-minute missions but require months, and sometimes years, between flights because the payloads typically need reconditioning after each flight.

“Commercial manned flights have the potential to completely change all that by providing a stabilized, completely reusable platform that is 30 times less expensive per flight than sounding rockets and can fly many times per week,” DeForest said. “SSIPP is a first step to exploiting that platform. We hope to enable space-based observation in the same, inexpensive mode as ground-based observatories, where a scientist might build up a new instrument for a single observation and break it down a week later.”

SSIPP uses a classic, two-stage pointing system similar to larger spacecraft, but in this case the first stage is a pilot who initially steers the instrument toward the Sun, explained Systems Engineer Jed Diller, also of SwRI. “SSIPP does the rest, locking onto the Sun to allow observations,” he said.

The first SSIPP space flight will search for “solar ultrasound,” which DeForest said is a phenomenon first observed in the early 2000s by the Transitional Region and Coronal Explorer (TRACE) spacecraft. The “ultrasound” is sound waves with 10 second period, some 18 octaves deeper than ultrasound on Earth, and forms visible ripples in the Sun’s surface layers. The waves are difficult to detect without space instrumentation, because the tiny, rapid fluctuations cannot be separated from the confounding influence of Earth’s turbulent atmosphere, he said.

The first test flights of SSIPP will be aboard a general aviation aircraft during the spring of 2015. It is scheduled to fly on XCOR’s Lynx suborbital spacecraft immediately on completion of XCOR’s flight test program in 2015.

Although at first SSIPP will be operated from inside the cockpit, a full system eventually will be mounted outside the host vehicle to enable ultraviolet (UV) and X-ray observations that are inaccessible from the ground.

SSIPP will be on display at the XCOR booth, No. 2723.

For more information, contact Joe Fohn, (210) 522-4630, Communications Department, Southwest Research Institute, PO Drawer 28510, San Antonio, TX 78228-0510

Joe Fohn | EurekAlert!
Further information:
http://www.swri.org/9what/releases/2014/ssipp.htm#.VIr3e2Ewfcs

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>