Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swiftly switched spins stay cool

16.05.2019

International team of scientists demonstrates superfast optical magnetization switching with record efficiency

Using extremely short bursts of light, precisely shaped in a custom-cut gold antenna, an international research team from Germany, The Netherlands, Russia, and the US has switched the magnetization state of a solid faster and more efficiently than ever before.


Using ultrashort pulses of light enables extremely economical switching of spins within a few picoseconds from one stable orientation (red arrow) to another (white arrow).

Illustration: Brad Baxley (parttowhole.com) – For exclusive use in reporting this press release.

Their key achievement could pave the way towards a novel kind of nearly dissipation-free information technology. The results are published in the current issue of the top-tier journal Nature.

Modern electronics has to be ever faster and more compact. Yet this challenge comes with a fundamental predicament: Performing a task more rapidly costs more energy. State-of-the-art technology allows for reading and writing information on a hard disk drive at a rate of up to one billion (109) bits per second.

The binary information (0 or 1, respectively) is encoded in the orientation of tiny magnetic moments called spins. A magnetic read/write head is used to set or retrieve the information. While this scheme has defined large-scale magnetic data storage for more than six decades, it is facing fundamental limitations regarding energy efficiency and speed.

Already now, data centers around the world are responsible for 5 % of the world’s electricity consumption – a staggering and continuously increasing figure. In light of this, it may sound like a dream that the laws of physics do not prohibit ultrafast and almost dissipation-free information processing.

Researchers around Dr. Christoph Lange and Prof. Dr. Rupert Huber (Department of Physics, University of Regensburg) as well as Dr. Rostislav Mikhaylovskiy, Prof. Dr. Alexey Kimel (Radboud University, Nijmegen, The Netherlands) and Prof. Dr. Anatoly Zvezdin (Institute of the Russian Academy of Sciences, Moscow, Russia) have now made a large leap towards ultrafast information storage with minimal energy dissipation.

In principle, low-energy electromagnetic pulses in the far infrared - the so-called terahertz spectral range – should allow for steering spins from one stable configuration to another to encode information in the shortest possible time, and at the minimal possible expense of energy. So far, however, even the strongest sources of terahertz radiation did not provide sufficiently strong fields to achieve this goal.

“It has been possible for a few years to wobble spins around a little bit, but pushing them hard enough to fully reverse their orientation had remained impossible”, as Stefan Schlauderer, PhD student and first author of the study, explains.

The international consortium cut the Gordian knot by combining the expertise of the Nijmegen group on a material class called antiferromagnets with the ability of the Regensburg group to control solids with the help of custom-tailored terahertz electromagnetic waveforms faster than even a single oscillation cycle of light.

The international team utilized a novel interaction mechanism which efficiently couples the spin motion to terahertz electric fields. In order to reach sufficient field strengths they used a trick from cutting-edge nanooptics. They developed and fabricated a very small antenna which strongly concentrates and thus enhances the terahertz radiation.

With this structure, the force on the spins exerted by the terahertz pulses was strong enough to change the structure’s magnetic orientation within just a few picoseconds (millionths of a millionths of a second) while requiring only a single quantum – a photon – of the terahertz light field, per spin.

Their scheme not only surpasses the speed of existing technologies by a factor of more than 1000, it furthermore sets a new record in terms of energy efficiency. “The amount of energy put into the switching process is spot-on, which allows for virtually frictionless spin motion. Our approach thus bears potential for quantum information processing”, Dr. Lange details.

The results are a key step towards a new generation of information technology which aims to simultaneously enable maximal energy efficiency and speed.

Wissenschaftliche Ansprechpartner:

Priv.-Doz. Dr. habil. Christoph Lange
Am Lehrstuhl für Experimentelle und Angewandte Physik
Universität Regensburg
Tel.: 0941-943-1800
E-Mail: christoph.lange@physik.uni-regensburg.de

Prof. Dr. Rupert Huber
Lehrstuhl für Experimentelle und Angewandte Physik
Universität Regensburg
Tel.: 0941-943-2070
E-Mail: rupert.huber@physik.uni-regensburg.de

Originalpublikation:

S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching”, Nature (2019).
DOI: 10.1038/s41586-019-1174-7

ID: Nature 569, 383–387 (2019)

Link: https://www.nature.com/articles/s41586-019-1174-7

Christina Glaser | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Physics and Astronomy:

nachricht Researchers demonstrate three-dimensional quantum hall effect for the first time
19.08.2019 | Singapore University of Technology and Design

nachricht A laser for penetrating waves
19.08.2019 | Helmholtz-Zentrum Dresden-Rossendorf

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Stanford builds a heat shield just 10 atoms thick to protect electronic devices

19.08.2019 | Information Technology

Researchers demonstrate three-dimensional quantum hall effect for the first time

19.08.2019 | Physics and Astronomy

Catalysts for climate protection

19.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>