Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swiftly switched spins stay cool

16.05.2019

International team of scientists demonstrates superfast optical magnetization switching with record efficiency

Using extremely short bursts of light, precisely shaped in a custom-cut gold antenna, an international research team from Germany, The Netherlands, Russia, and the US has switched the magnetization state of a solid faster and more efficiently than ever before.


Using ultrashort pulses of light enables extremely economical switching of spins within a few picoseconds from one stable orientation (red arrow) to another (white arrow).

Illustration: Brad Baxley (parttowhole.com) – For exclusive use in reporting this press release.

Their key achievement could pave the way towards a novel kind of nearly dissipation-free information technology. The results are published in the current issue of the top-tier journal Nature.

Modern electronics has to be ever faster and more compact. Yet this challenge comes with a fundamental predicament: Performing a task more rapidly costs more energy. State-of-the-art technology allows for reading and writing information on a hard disk drive at a rate of up to one billion (109) bits per second.

The binary information (0 or 1, respectively) is encoded in the orientation of tiny magnetic moments called spins. A magnetic read/write head is used to set or retrieve the information. While this scheme has defined large-scale magnetic data storage for more than six decades, it is facing fundamental limitations regarding energy efficiency and speed.

Already now, data centers around the world are responsible for 5 % of the world’s electricity consumption – a staggering and continuously increasing figure. In light of this, it may sound like a dream that the laws of physics do not prohibit ultrafast and almost dissipation-free information processing.

Researchers around Dr. Christoph Lange and Prof. Dr. Rupert Huber (Department of Physics, University of Regensburg) as well as Dr. Rostislav Mikhaylovskiy, Prof. Dr. Alexey Kimel (Radboud University, Nijmegen, The Netherlands) and Prof. Dr. Anatoly Zvezdin (Institute of the Russian Academy of Sciences, Moscow, Russia) have now made a large leap towards ultrafast information storage with minimal energy dissipation.

In principle, low-energy electromagnetic pulses in the far infrared - the so-called terahertz spectral range – should allow for steering spins from one stable configuration to another to encode information in the shortest possible time, and at the minimal possible expense of energy. So far, however, even the strongest sources of terahertz radiation did not provide sufficiently strong fields to achieve this goal.

“It has been possible for a few years to wobble spins around a little bit, but pushing them hard enough to fully reverse their orientation had remained impossible”, as Stefan Schlauderer, PhD student and first author of the study, explains.

The international consortium cut the Gordian knot by combining the expertise of the Nijmegen group on a material class called antiferromagnets with the ability of the Regensburg group to control solids with the help of custom-tailored terahertz electromagnetic waveforms faster than even a single oscillation cycle of light.

The international team utilized a novel interaction mechanism which efficiently couples the spin motion to terahertz electric fields. In order to reach sufficient field strengths they used a trick from cutting-edge nanooptics. They developed and fabricated a very small antenna which strongly concentrates and thus enhances the terahertz radiation.

With this structure, the force on the spins exerted by the terahertz pulses was strong enough to change the structure’s magnetic orientation within just a few picoseconds (millionths of a millionths of a second) while requiring only a single quantum – a photon – of the terahertz light field, per spin.

Their scheme not only surpasses the speed of existing technologies by a factor of more than 1000, it furthermore sets a new record in terms of energy efficiency. “The amount of energy put into the switching process is spot-on, which allows for virtually frictionless spin motion. Our approach thus bears potential for quantum information processing”, Dr. Lange details.

The results are a key step towards a new generation of information technology which aims to simultaneously enable maximal energy efficiency and speed.

Wissenschaftliche Ansprechpartner:

Priv.-Doz. Dr. habil. Christoph Lange
Am Lehrstuhl für Experimentelle und Angewandte Physik
Universität Regensburg
Tel.: 0941-943-1800
E-Mail: christoph.lange@physik.uni-regensburg.de

Prof. Dr. Rupert Huber
Lehrstuhl für Experimentelle und Angewandte Physik
Universität Regensburg
Tel.: 0941-943-2070
E-Mail: rupert.huber@physik.uni-regensburg.de

Originalpublikation:

S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching”, Nature (2019).
DOI: 10.1038/s41586-019-1174-7

ID: Nature 569, 383–387 (2019)

Link: https://www.nature.com/articles/s41586-019-1174-7

Christina Glaser | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Physics and Astronomy:

nachricht The cascade to criticality
02.06.2020 | ETH Zurich Department of Physics

nachricht K-State study reveals asymmetry in spin directions of galaxies
02.06.2020 | Kansas State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Perfect optics through light scattering

02.06.2020 | Power and Electrical Engineering

The digital construction site: A smarter way of building with mobile robots

02.06.2020 | Architecture and Construction

Process behind the organ-specific elimination of chromosomes in plants unveiled

02.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>