Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swedish instruments to study the Martian atmosphere in collaboration with Russia and China

07.11.2011
The Russian Phobos-Grunt spacecraft will be launched together with its Chinese sub-satellite Yinghuo-1 towards Mars from the Baikonur Cosmodrome in Kazakhstan on Tuesday evening (8 November 2011) CET, bearing three satellite instruments developed and built in Sweden.

The dual spacecraft is scheduled to arrive at Mars in October 2012. After insertion into orbit the two spacecraft will separate. Yinghuo-1 will stay on a highly elliptical orbit (800km x 80,000 km), whereas Phobos-Grunt will enter a more circular orbit in order to approach and land on the Martian moon Phobos.


Phobos-Grunt
Image: IKI


The two YPP ion mass analysers, YPP-i1 and YPP-i2
Photo: Swedish Institute of Space Physics, IRF

The Swedish Institute for Space Physics (IRF) in Kiruna has provided three identical ion mass analysers for this mission. The Detector for Ions at Mars (DIM) is mounted on the main Phobos-Grunt spacecraft. The DIM sensor was developed and built at IRF, while the associated digital processing unit was built at the Russian Space Research Institute (IKI).

Yinghuo-1 carries a plasma package (Yinghuo Plasma Package, YPP) consisting of two ion mass analysers and an electron sensor. The package is a joint development between IRF and the National Space Science Center (NSSC) in China. IRF developed and built the ion mass analysers (YPP-i1 and YPP-i2), while NSSC has provided the associated digital processing units and the electron sensor. The Space Research Institute (IWF) in Graz, Austria, participates in the scientific aspects of the Yinghuo Plasma Package.

All three ion sensors will simultaneously investigate the interaction between the solar wind (a stream of charged particles from the sun) and the Martian atmosphere from different vantage points in space.

"We already have the ASPERA-3 instrument orbiting Mars on the European spacecraft Mars Express," says Dr Martin Wieser of IRF. "With all of these instruments in place we will be able to do multi-point plasma measurements from orbiting spacecraft for the first time at Mars."

Martin Wieser adds, "And thanks to Yinghuo's elliptical orbit, the Yinghuo Plasma Package will be able to explore the distant plasma tail of Mars -- another first."

More information:
Dr Martin Wieser, scientist and project leader, IRF, tel. +46-980-79198, martin.wieser*irf.se

Rick McGregor, Information Officer, IRF, tel. +46-980-79178, rick.mcgregor*irf.se

Rick McGregor | idw
Further information:
http://www.irf.se/link/dim_ypp_page
http://www.russianspaceweb.com/phobos_grunt_2011.html#baikonur
http://phobos.cosmos.ru/index.php?id=285&L=2

Further reports about: DIM IRF Mars Martian Winds NSSC Phobos-Grunt Plasma technology Space Yinghuo Yinghuo-1 elliptical orbit

More articles from Physics and Astronomy:

nachricht First radio detection of an extrasolar planetary system around a main-sequence star
04.08.2020 | Max-Planck-Institut für Radioastronomie

nachricht The art of making tiny holes
04.08.2020 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>