Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swedish instruments to study the Martian atmosphere in collaboration with Russia and China

07.11.2011
The Russian Phobos-Grunt spacecraft will be launched together with its Chinese sub-satellite Yinghuo-1 towards Mars from the Baikonur Cosmodrome in Kazakhstan on Tuesday evening (8 November 2011) CET, bearing three satellite instruments developed and built in Sweden.

The dual spacecraft is scheduled to arrive at Mars in October 2012. After insertion into orbit the two spacecraft will separate. Yinghuo-1 will stay on a highly elliptical orbit (800km x 80,000 km), whereas Phobos-Grunt will enter a more circular orbit in order to approach and land on the Martian moon Phobos.


Phobos-Grunt
Image: IKI


The two YPP ion mass analysers, YPP-i1 and YPP-i2
Photo: Swedish Institute of Space Physics, IRF

The Swedish Institute for Space Physics (IRF) in Kiruna has provided three identical ion mass analysers for this mission. The Detector for Ions at Mars (DIM) is mounted on the main Phobos-Grunt spacecraft. The DIM sensor was developed and built at IRF, while the associated digital processing unit was built at the Russian Space Research Institute (IKI).

Yinghuo-1 carries a plasma package (Yinghuo Plasma Package, YPP) consisting of two ion mass analysers and an electron sensor. The package is a joint development between IRF and the National Space Science Center (NSSC) in China. IRF developed and built the ion mass analysers (YPP-i1 and YPP-i2), while NSSC has provided the associated digital processing units and the electron sensor. The Space Research Institute (IWF) in Graz, Austria, participates in the scientific aspects of the Yinghuo Plasma Package.

All three ion sensors will simultaneously investigate the interaction between the solar wind (a stream of charged particles from the sun) and the Martian atmosphere from different vantage points in space.

"We already have the ASPERA-3 instrument orbiting Mars on the European spacecraft Mars Express," says Dr Martin Wieser of IRF. "With all of these instruments in place we will be able to do multi-point plasma measurements from orbiting spacecraft for the first time at Mars."

Martin Wieser adds, "And thanks to Yinghuo's elliptical orbit, the Yinghuo Plasma Package will be able to explore the distant plasma tail of Mars -- another first."

More information:
Dr Martin Wieser, scientist and project leader, IRF, tel. +46-980-79198, martin.wieser*irf.se

Rick McGregor, Information Officer, IRF, tel. +46-980-79178, rick.mcgregor*irf.se

Rick McGregor | idw
Further information:
http://www.irf.se/link/dim_ypp_page
http://www.russianspaceweb.com/phobos_grunt_2011.html#baikonur
http://phobos.cosmos.ru/index.php?id=285&L=2

Further reports about: DIM IRF Mars Martian Winds NSSC Phobos-Grunt Plasma technology Space Yinghuo Yinghuo-1 elliptical orbit

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

How Humans and Machines Navigate Complex Situations

19.11.2018 | Science Education

Finding plastic litter from afar

19.11.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>