Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sussex scientists one step closer to a clock that could replace GPS and Galileo

12.03.2019

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices which could reduce our reliance on satellite mapping in the future - using cutting-edge laser beam technology.


Drawing of a pulse propogating in the chip.

Credit: EPic Lab, University of Sussex

Their development greatly improves the efficiency of the lancet (which in a traditional clock is responsible for counting), by 80% - something which scientists around the world have been racing to achieve.

Currently, the UK is reliant on the US and the EU for the satellite mapping that many of us have on our phones and in our cars. That makes us vulnerable not only to the whims of international politics, but also to the availability of satellite signal.

Dr Alessia Pasquazi from the EPic Lab in the School of Mathematical and Physical Sciences at the University of Sussex explains the breakthrough: "With a portable atomic clock, an ambulance, for example, will be able to still access their mapping whilst in a tunnel, and a commuter will be able to plan their route whilst on the underground or without mobile phone signal in the countryside. Portable atomic clocks would work on an extremely accurate form of geo-mapping, enabling access to your location and planned route without the need for satellite signal.

"Our breakthrough improves the efficiency of the part of the clock responsible for counting by 80%. This takes us one step closer to seeing portable atomic clocks replacing satellite mapping, like GPS, which could happen within 20 years. This technology will changes people's everyday lives as well as potentially being applicable in driverless cars, drones and the aerospace industry. It's exciting that this development has happened here at Sussex."

Optical atomic clocks are at the pinnacle of time measuring devices, losing less than one second every ten billion years. Curently though, they are massive devices, weighing hundreds of kilograms. In order to have an optimal practical function that could be utilised by your average person, their size needs to be greatly reduced whilst retaining the accuracy and speed of the large-scale clocks.

In an optical atomic clock, the reference (the pendulum in a traditional clock) is directly derived by the quantum property of a single atom confined in a chamber: it is the electromagnetic field of a light beam oscillating hundreds of trillions of times per second. The clock counting element required to work at this speed is an optical frequency comb - a highly specialised laser emitting, simultaneously, many precise colours, evenly spaced in frequency.

Micro-combs bring down the dimension of frequency combs by exploiting tiny devices named optical microresonators. These devices have captured the imagination of the scientific community world-wide over the past ten years, with their promise of realising the full potential of frequency combs in a compact form. However, they are delicate devices, complex to operate and typically do not meet the requirement of practical atomic clocks.

The breakthrough at the EPic Lab, detailed in a paper published today (Monday 11 March) in the journal, Nature Photonics, is the demonstration an exceptionally efficient and robust micro-comb based on a unique kind of wave called a 'laser cavity soliton'.

Dr Pasquazi continues: "Solitons are special waves that are particularly robust to perturbation. Tsunamis, for instance, are water solitons. They can travel unperturbed for incredible distances; after the Japan earthquake in 2011 some of them even reached as far as the coast of California.

"Instead of using water, in our experiments performed by Dr Hualong Bao, we use pulses of light, confined in a tiny cavity on a chip. Our distinctive approach is to insert the chip in a laser based on optical fibres, the same used to deliver internet in our homes.

"The soliton that travels in this combination has the benefit of fully exploiting the micro-cavities' capabilities of generating many colours, whilst also offering the robustness and versatility of control of pulsed lasers. The next step is to transfer this chip-based technology to fibre technology - something that we're exceptionally well-placed at the University of Sussex to achieve."

Professor Marco Peccianti from the University of Sussex EPic Lab adds: "We are moving towards the integration of our device with that of the ultra-compact atomic reference (or pendulum) developed by Professor Matthias Keller's research group here at the University of Sussex. Working together, we plan to develop a portable atomic clock that could revolutionise the way we count time in the future.

"Our development represents a significant step forward in the production of practical atomic clocks and we're extremely excited by our plans, which range from partnerships with the UK aerospace industry, which could come to fruition within five years, through to portable atomic clocks that could be housed in your phone and within driverless cars and drones within 20 years."

###

The full paper is published in can be accessed here from that time: http://dx.doi.org/10.1038/s41566-019-0379-5

Media Contact

Anna Ford
a.ford@sussex.ac.uk
01-273-678-111

 @sussexunipress

http://www.sussex.ac.uk 

Anna Ford | EurekAlert!
Further information:
https://www.sussex.ac.uk/news/all?id=48070
http://dx.doi.org/10.1038/s41566-019-0379-5

More articles from Physics and Astronomy:

nachricht New diagnostic options: Physicists lower threshold for detecting extremely weak magnetic signals
11.03.2019 | Universität des Saarlandes

nachricht Infrared Technology for Space, Climate and Security
11.03.2019 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

Im Focus: Binding with consequences

Researchers from Freiburg and Ulm discover mechanism through which bacteria attack white blood cells

A research team led by Prof. Dr. Winfried Römer and Dr. Elias Hobeika from the University of Freiburg and the University Medical Center in Ulm has discovered a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Mystery solved – Biologists in Dresden explain the genetic origins of the saffron crocus

12.03.2019 | Life Sciences

Breakthrough technology from Heraeus Noblelight for aerospace

12.03.2019 | Trade Fair News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>